Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2017 (2017), Article ID 7408645, 6 pages
Research Article

Shielding Verifications for a Gamma Irradiation Facility Considering the Installation of a New Automatic Product Loading System

Nuclear Technology Development Centre (CDTN), Brazilian Nuclear Energy Commission (CNEN), Campus of UFMG, Pampulha, Belo Horizonte, MG, Brazil

Correspondence should be addressed to Amir Zacarias Mesquita

Received 1 June 2017; Revised 28 August 2017; Accepted 11 September 2017; Published 25 October 2017

Academic Editor: Michael I. Ojovan

Copyright © 2017 Maritza Rodriguez Gual et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Soares, P. Squair, F. C. L, L. C. Meira-Belo, and P. A. Grossi, “Blood compouns irradiation process: assessment of absorbed dose using fricke and thermoluminiscent dosimetric systems,” in Proceedings of the International Nuclear Atlantic Conference (Inac), Brazilian Nuclear Energy Association, Rio de Janeiro, Brazil, 2009.
  2. A. S. Medeiros, M. R. Gual, C. Pereira, and L. O. Faria, “Thermal analysis for study of the gamma radiation effects in poly(vinylidene fluoride),” Radiation Physics and Chemistry, vol. 116, pp. 345–348, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. H. C. Silva and F. S. M, “Beryl colorless, quartz, and brazilianita study using x-ray diffraction, spectroscopy in the infrared region and gamma irradiation in,” in Proceedings of the Semana de Engenharia Nuclear e Ciências das Radiações (Sencir), Núcleo De Divulgação Científica, Belo Horizonte, Brazil, 2014, in Portuguese. View at Google Scholar
  4. G. S. M. B. de Souza, L. A. Rodrigues, W. J. de Oliveira et al., “Disinfection of domestic effluents by gamma radiation: Effects on the inactivation of Ascaris lumbricoides eggs,” Water Research, vol. 45, no. 17, pp. 5523–5528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. L. Oliveira et al., “Qualidade microbiologica da carne de frango irradiada em embalagem convencional e a vácuo,” in Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 61, pp. 1210–1217, SciELO, São Paulo, SP, Brasil, 2009, View at Google Scholar
  6. E. H. M. Nunes, F. S. Lameiras, M. Houmard, and W. L. Vasconcelos, “Spectroscopic study of natural quartz samples,” Radiation Physics and Chemistry, vol. 90, pp. 79–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. IAEA—International Atomic Energy Agency, Trends in Radiation Sterilization of Health Care Products, STI/PUB/1313, International Atomic Energy Agency, Vienna, Austria, 2008.
  8. L. C. D. Ladeira, Development of a system for automation control for short time irradiations in panoramic gamma irradiators with dry storage [Ph.D. thesis], Ciência e Tecnologia das Radiações, Minerais e Materiais, Belo Horizonte, Brazil, 2015 (Portuguese).
  9. International Commission on Radiological Protection, “Annals of the ICRP,” The 2007 recommendations of the international commission on radiological protection, JAICRP, vol. 37, no. 2–4, pp. 1–332, 2007, ICRP-103. View at Google Scholar
  10. CNEN Comissão Nacional de Energia Nuclear, Basic Guidelines on Radiological Protection, CNEN-NN-3.01 Regulatory Position 3:01/004:2011, Dose Constraint, Occupational Reference Levels and Area Classification, Instituto de Pesquisas energéticas e Nucleares, Rio de Janeiro, Brazil, 2011.
  11. J. S. Hendricks et al., “MCNPX 2.6.0 EXTENSIONS,” Tech. Rep. LA-UR-08-2216, Los Alamos National Laboratory, Los Alamos, NM, USA, 2008. View at Google Scholar
  12. International Atomic Energy Agency (IAEA), Gamma irradiators for radiation processing, IAEA-TECDOC-1386, International Atomic Energy Agency, Vienna, Austria.
  13. International Atomic Energy Agency (IAEA), Security of Radioactive Sources, IAEA-TECDOC-1387, International Atomic Energy Agency, Vienna, Austria, 2009.
  14. IAEA - International Atomic Energy Agency, Manual on Panoramic Gamma Irradiators (Categories II and IV), IAEA-PRSM-8 (Rev. 1), IAEA, Vienna, Austria, 1996.
  15. Health Physics Society, Safe design and use of panoramic, wet source storage gamma irradiators (category IV) and dry source storage gamma irradiators (category II), American National Standard Institute -N43.10, New York, NY, USA, 2001.
  16. International Commission on Radiation Units and Measurements, “Tissue substitutes in radiation dosimetry and measurement,” ICRU Report 44, 1989. View at Google Scholar
  17. F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1986. View at Publisher · View at Google Scholar
  18. M. R. Gual, P. A. Grossi, C. A. Caballero, L. C. D. Ladeira, and F. S. Lameiras, “Preliminary MCNPX Modelling of the F-127 Source Shipping Container for the Gb-127 Co-60 Irradiator Facility,” Transactions of the American Nuclear Society, vol. 112, pp. 575-576, 2015. View at Google Scholar
  19. A. L. Schwarz, R. A. Schwarz, and L. L. Carter, “MCNPX/MCNPX Visual editor computer code version 22S,” February, 2008.
  20. Comissπo Nacional de Energia Nuclear (CNEN). Dosimetry Report DR-IR-214, G127 Dry storage irradiator, CNEN, dosimetry Nordion, Brazil, 2002.
  21. M. R. Gual, F. M. Milian, A. Z. Mesquita, and C. Pereira, “New source models to represent the irradiation process in panoramic gamma irradiator,” Applied Radiation and Isotopes, vol. 128, pp. 175–182, 2017. View at Publisher · View at Google Scholar