Abstract

High-amplitude response suppression of the primary resonance of a nonlinear plant under cubic velocity feedback control is investigated. By means of the multiple scales method, two equations on the amplitude and phase of the response of the nonlinear system are obtained and the force-response and frequency-response curves are shown. The stability analyses for the open- and closed-loop responses of the system are carried out and the performance of the control strategy is investigated. The instantaneous power requirement of the control law is also examined. It can be demonstrated that appropriate choice for the feedback gain can greatly reduce the response amplitude of the primary resonance and completely eliminate the multiple responses. Finally the perturbation solutions are verified with numerical simulations.