Shock and Vibration

Shock and Vibration / 2009 / Article

Open Access

Volume 16 |Article ID 457216 | 11 pages | https://doi.org/10.3233/SAV-2009-0465

Power Delivered to Mechanical Systems by Random Vibrations

Received28 Feb 2008

Abstract

This paper develops deformational response power descriptions of multiple degree-of-freedom systems due to stationary random vibration excitation. Two new concepts are developed. The deformational response power density (DRPD) can be computed when a structure's natural frequencies and modal masses are available. The DRPD shows the spectral content of the deformational power delivered to a specific structure by the stationary, random excitation. This function can be found through a weighted windowing of the power spectrum of the input acceleration excitation. Deformational response input power spectra (DRIPS), similar to the input energy spectrum and shock response spectrum, give the power delivered to single-degree-of-freedom systems as a function of natural frequency. It is shown that the DRIPS is simply a smoothed version of the power spectrum of the input acceleration excitation. The DRIPS gives rise to a useful power-based data smoothing operation.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

372 Views | 491 Downloads | 4 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.