Shock and Vibration

Shock and Vibration / 2009 / Article

Open Access

Volume 16 |Article ID 676702 | 17 pages | https://doi.org/10.3233/SAV-2009-0461

Symbolic Analysis of Sub-Optimal Bang-Bang Control Mechanisms in Base Isolated Structures

Received15 Oct 2007

Abstract

In the performance-based design of earthquake-resistant structures, researchers have recently proposed protection systems where base isolation devices are supplemented by active control mechanisms. Established approaches to understanding this problem domain rely on numerical and experimental analyses, which have the disadvantage of obscuring potential insight into cause-and-effect relationships existing between parameters of sub-optimal control and their affect on linear and nonlinear system response. As a first step toward mitigating this limitation, this paper explores the role of symbolic analysis in understanding how sub-optimal bang-bang control mechanisms depend on design objectives and their impact on performance of base isolated structures. New results are obtained through three avenues of investigation: (1) Single- and two-degree-of-freedom systems, (2) Restricted classes of multi-degree-of-freedom systems, and (3) Sensitivity of parameters in modified bang-bang control to localized nonlinear deformations in the base isolation devices. The principle outcome is matrices of symbolic expressions for bang-bang control expressed in terms of the structural system parameters and state. We identify modeling constraints and limits (e.g., perfect isolation) where lengthy symbolic expressions simplify to the point where relationships between the inner workings of the bang-bang control strategy and specific design objectives become evident.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

527 Views | 294 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.