Shock and Vibration

Shock and Vibration / 2010 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2009

View this Special Issue

Open Access

Volume 17 |Article ID 314354 |

Lothar Gaul, Jens Becker, "Damping Prediction of Structures with Bolted Joints", Shock and Vibration, vol. 17, Article ID 314354, 13 pages, 2010.

Damping Prediction of Structures with Bolted Joints

Received17 Jun 2010
Accepted17 Jun 2010


Friction in joints significantly contributes to the observed overall damping of mechanical structures. Especially if the material damping is low, the frictional effects in joints and clamping boundary conditions dominate the structural damping. The damping and the stiffness of the structure are nonlinear functions of the system states and consequently of the excitation signal and amplitude. If these nonlinear effects should be incorporated in the design process, transient simulations must be employed in order to predict and analyze the damping for a given excitation, though they need excessive computation power due to the nonlinear constitutive laws and the high contact stiffnesses.As one approach to alleviate transient simulations, the application of component mode synthesis (CMS) methods to structures with friction is investigated exploiting the linearity of the jointed substructures. The friction and the nonlinear normal contact is modeled by constitutive laws that are implemented in node-to-node finite elements. The necessary considerations for accurate damping prediction by the reduced models, the accuracy and the computational times for transient simulations are discussed. The developed model reduction techniques allow a strong reduction of the computation time which in turn makes it a promising tool for model updating and predictive parameter studies. As an application example, a beam-like structure with attached friction damper is investigated in simulations and the obtained numerical results after model updating are compared to experiments.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.