Shock and Vibration

Shock and Vibration / 2010 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2009

View this Special Issue

Open Access

Volume 17 |Article ID 359283 | 16 pages | https://doi.org/10.3233/SAV-2010-0538

Stochastic Modeling of Surface Viscoelastic Treatments Combined with Model Condensation Procedures

Received17 Jun 2010
Accepted17 Jun 2010

Abstract

Engineering structures incorporating viscoelastic materials are characterized by inherent uncertainties affecting the parameters that control the efficiency of the viscoelastic dampers. In this context, the handling of variability in viscoelastic systems is a natural and necessary extension of the modeling capability of the present techniques of deterministic analysis. Among the various methods devised for uncertainty modeling, the stochastic finite element method has received major attention, as it is well adapted for applications to complex engineering systems. In this paper, the stochastic finite element method applied to a structural three-layer sandwich plate finite element containing a viscoelastic layer, with random parameters modelled as random fields, is presented. Accounting for the dependence of the behaviour of the viscoelastic materials with respect to frequency and temperature, using the concepts of complex modulus and shift factor, the uncertainties are modelled as homogeneous Gaussian stochastic fields and are discretized according to the spectral method, using Karhunen-Loève expansions. The modeling procedure is confined to the frequency domain, and the dynamic responses are characterized by frequency response functions (FRF's). Monte Carlo Simulation (MCS) combined with Latin Hypercube Sampling is used as the stochastic solver. The typically high dimensions of finite element models of viscoelastic systems combined with the large number of Monte Carlo samples to be computed make the evaluation of the FRF's variability computer intensive. Those difficulties motivate the use of condensation methods specially adapted for viscoelastic systems, in order to alleviate the computational cost. After the presentation of the underlying formulation, numerical applications of moderate complexity are presented and discussed aiming at demonstrating the main features and, particularly, the computation cost savings provided by the association of MCS with the suggested condensation procedure.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

396 Views | 416 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.