Shock and Vibration

Shock and Vibration / 2012 / Article

Open Access

Volume 19 |Article ID 408957 | 16 pages |

Modeling and Control of the Vibration of Two Beams Coupled with Fluid and Active Links

Received23 Nov 2010
Revised28 Jul 2011


Investigated are modeling and control approaches for vibration analysis of two identical beams which are coupled with fluid and active mechanical links. In the modeling of the coupled beam system, orthogonal functions are used to represent vibration of the beams and the fluid-structure interaction is considered. Frequency Response Functions (FRFs) are derived from the coupled governing equations and the superposition principle for linear vibration systems. In the control of vibration of the beams, impulse response functions corresponding to the FRFs and an adaptive control algorithm are employed to attenuate vibration transmission between the two beams. Natural frequencies, mode shapes as well as the pressure distribution in the fluid are computed. The results obtained by the proposed modeling method are in good consistency with those obtained by the finite element analysis. Moreover, it is demonstrated that the active mechanical link is able to reduce vibration transmission and change the deformation of beams as well as the distribution of fluid pressure.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

415 Views | 632 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.