Shock and Vibration

Shock and Vibration / 2012 / Article

Open Access

Volume 19 |Article ID 473713 |

K. P. Kumar, K.V.N.S. Rao, K.R. Krishna, B. Theja, "Neural Network Based Vibration Analysis with Novelty in Data Detection for a Large Steam Turbine", Shock and Vibration, vol. 19, Article ID 473713, 11 pages, 2012.

Neural Network Based Vibration Analysis with Novelty in Data Detection for a Large Steam Turbine

Received04 Nov 2009
Revised18 May 2010


Health of rotating machines like turbines, generators, pumps and fans etc., is crucial to reliability in power generation. For real time, integrated health monitoring of steam turbine, novel fault detection data is essential to reduce operating and maintenance costs while optimizing the life of the critical engine components. This paper describes about normal and abnormal vibration data detection procedure for a large steam turbine (210 MW) using artificial neural networks (ANN). Self-organization map is trained with the normal data obtained from a thermal power station, and simulated with abnormal condition data from a test rig developed at laboratory. The optimum size of self-organization map is determined using quantization and topographic errors, which has a strong influence on the quality of the clustering. The Mat lab 7 codes are applied to generate program using neural networks toolbox.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.