Shock and Vibration

Shock and Vibration / 2012 / Article

Open Access

Volume 19 |Article ID 567251 | 21 pages | https://doi.org/10.3233/SAV-2010-0632

Damage Identification in Bars with a Wave Propagation Approach and a Hybrid Optimization Method

Received01 Apr 2010
Revised16 Dec 2010

Abstract

The formulation and solution of the inverse problem of damage identification based on wave propagation approach are presented. Different damage scenarios for a bar are considered. Time history responses, obtained from pulse-echo synthetic experiments, are used to identify damage position, severity and shape. In order to account for noise corrupted data, different levels of signal to noise ratio – varying from 30 to 0 dB – are introduced. In the identification process, different optimization methods are investigated: the deterministic Levenberg-Marquardt; the stochastic Particle Swarm Optimization; and a hybrid technique combining the aforementioned methods. It is shown that the damage identification procedure built on the wave propagation approach was successful, even for highly corrupted noisy data. Test case results are presented and a few comments on the advantages of deterministic and stochastic methods and their combination are also reported. Finally, an experimental validation of the sequential algebraic algorithm, used for modeling the direct problem, is presented.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

404 Views | 351 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.