Shock and Vibration

Shock and Vibration / 2012 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2011

View this Special Issue

Open Access

Volume 19 |Article ID 804590 | 12 pages |

Empirical Mode Decomposition of the Acceleration Response of a Prismatic Beam Subject to a Moving Load to Identify Multiple Damage Locations

Received25 Apr 2012
Accepted25 Apr 2012


Empirical Mode Decomposition (EMD) is a technique that converts the measured signal into a number of basic functions known as intrinsic mode functions. The EMD-based damage detection algorithm relies on the principle that a sudden loss of stiffness in a structural member will cause a discontinuity in the measured response that can be detected through a distinctive spike in the filtered intrinsic mode function. Recent studies have shown that applying EMD to the acceleration response, due to the crossing of a constant load over a beam finite element model, can be used to detect a single damaged location. In this paper, the technique is further tested using the response of a discretized finite element beam with multiple damaged sections modeled as localized losses of stiffness. The ability of the algorithm to detect more than one damaged section is analysed for a variety of scenarios including a range of bridge lengths, speeds of the moving load and noise levels. The use of a moving average filter on the acceleration response, prior to applying EMD, is shown to improve the sensitivity to damage. The influence of the number of measurement points and their distance to the damaged sections on the accuracy of the predicted damage is also discussed.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

614 Views | 756 Downloads | 13 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.