Shock and Vibration

Shock and Vibration / 2012 / Article

Open Access

Volume 19 |Article ID 891085 |

Yanlong Cao, Yuanfeng He, Huawen Zheng, Jiangxin Yang, "An Alarm Method for a Loose Parts Monitoring System", Shock and Vibration, vol. 19, Article ID 891085, 9 pages, 2012.

An Alarm Method for a Loose Parts Monitoring System

Received17 Jul 2011
Revised25 Oct 2011


In order to reduce the false alarm rate and missed detection rate of a Loose Parts Monitoring System (LPMS) for Nuclear Power Plants, a new hybrid method combining Linear Predictive Coding (LPC) and Support Vector Machine (SVM) together to discriminate the loose part signal is proposed. The alarm process is divided into two stages. The first stage is to detect the weak burst signal for reducing the missed detection rate. Signal is whitened to improve the SNR, and then the weak burst signal can be detected by checking the short-term Root Mean Square (RMS) of the whitened signal. The second stage is to identify the detected burst signal for reducing the false alarm rate. Taking the signal's LPC coefficients as its characteristics, SVM is then utilized to determine whether the signal is generated by the impact of a loose part. The experiment shows that whitening the signal in the first stage can detect a loose part burst signal even at very low SNR and thusly can significantly reduce the rate of missed detection. In the second alarm stage, the loose parts' burst signal can be distinguished from pulse disturbance by using SVM. Even when the SNR is −15 dB, the system can still achieve a 100% recognition rate

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.