Shock and Vibration

Shock and Vibration / 2012 / Article

Open Access

Volume 19 |Article ID 945028 | 18 pages | https://doi.org/10.3233/SAV-2012-0671

Nonlinear Vibration of a Continuum Rotor with Transverse Electromagnetic and Bearing Excitations

Received24 Aug 2011
Revised27 Dec 2011

Abstract

The nonlinear vibration of a rotor excited by transverse electromagnetic and oil-film forces is presented in this paper. The rotor-bearing system is modeled as a continuum beam which is loaded by a distributed electromagnetic load and is supported by two oil-film bearings. The governing equation of motion is derived and discretized as a group of ordinary differential equations using the Galerkin's method. The stability of the equilibrium of the rotor is analyzed with the Routh-Hurwitz criterion and the occurrence of the Andronov-Hopf bifurcation is pointed out. The approximate solution of periodic motion is obtained using the averaging method. The stability of steady response is analyzed and the amplitude-frequency curve of primary resonance is illustrated. The Runge-Kutta method is adopted to numerically solve transient response of the rotor-bearing system. Comparisons are made to present influences of electromagnetic load, oil-film force and both of them on the nonlinear vibration response. Bifurcation diagrams of the transverse motion versus rotation speed, electromagnetic parameter and bearing parameters are provided to show periodic motion, quasi-periodic motion and period-doubling bifurcations. Diagrams of time history, shaft orbit, the Poincaré section and fast Fourier transformation of the transverse vibration are presented for further understanding of the rotor response.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

481 Views | 593 Downloads | 4 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.