Abstract

In order to correctly analyze aeroengine whole-body vibration signals, Wavelet Correlation Feature Scale Entropy (WCFSE) and Fuzzy Support Vector Machine (FSVM) (WCFSE-FSVM) method was proposed by fusing the advantages of the WCFSE method and the FSVM method. The wavelet coefficients were known to be located in high Signal-to-Noise Ratio (S/N or SNR) scales and were obtained by the Wavelet Transform Correlation Filter Method (WTCFM). This method was applied to address the whole-body vibration signals. The WCFSE method was derived from the integration of the information entropy theory and WTCFM, and was applied to extract the WCFSE values of the vibration signals. Among the WCFSE values, the WFSE1 and WCFSE2 values on the scale 1 and 2 from the high band of vibration signal were believed to acceptably reflect the vibration feature and were selected to construct the eigenvectors of vibration signals as fault samples to establish the WCFSE-FSVM model. This model was applied to aeroengine whole-body vibration fault diagnosis. Through the diagnoses of four vibration fault modes and the comparison of the analysis results by four methods (SVM, FSVM, WESE-SVM, WCFSE-FSVM), it is shown that the WCFSE-FSVM method is characterized by higher learning ability, higher generalization ability and higher anti-noise ability than other methods in aeroengine whole-vibration fault analysis. Meanwhile, this present study provides a useful insight for the vibration fault diagnosis of complex machinery besides an aeroengine.