Abstract

This contribution investigates the influence of parametric excitation on the dynamic stability of a microelectromechanical system. In systems with just a single degree of freedom, parametric excitation causes the oscillator to exhibit unstable behavior within certain intervals of the parametric excitation frequency. In multi-degree of freedom systems on the other hand, unstable behavior is caused within a wider range of intervals of the parametric excitation frequency. Moreover, such systems show frequency intervals of enhanced stability, an effect known as anti-resonance phenomenon. Both types of phenomena, the parametric resonance and anti-resonance, are modeled and studied for a microelectromechanical system with two degrees of freedom and some novel results are discussed.