Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014, Article ID 286710, 11 pages
http://dx.doi.org/10.1155/2014/286710
Research Article

An Exact Series Solution for the Vibration of Mindlin Rectangular Plates with Elastically Restrained Edges

College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Received 4 March 2013; Accepted 19 September 2013; Published 25 February 2014

Academic Editor: Nuno Maia

Copyright © 2014 Xue Kai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Liew, Y. Xiang, and S. Kitipornchai, “Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions,” Computers and Structures, vol. 49, no. 1, pp. 1–29, 1993. View at Google Scholar · View at Scopus
  2. K. M. Liew, K. C. Hung, and M. K. Lim, “Vibration of mindlin plates using boundary characteristic orthogonal polynomials,” Journal of Sound and Vibration, vol. 182, no. 1, pp. 77–90, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Xiang, K. M. Liew, and S. Kitipornchai, “Vibration analysis of rectangular mindlin plates resting on elastic edge supports,” Journal of Sound and Vibration, vol. 204, no. 1, pp. 1–16, 1997. View at Google Scholar · View at Scopus
  4. D. Zhou, “Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh-Ritz method,” International Journal of Solids and Structures, vol. 38, no. 32-33, pp. 5565–5580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. F.-L. Liu and K. M. Liew, “Analysis of vibrating thick rectangular plates with mixed boundary constraints using differential quadrature element method,” Journal of Sound and Vibration, vol. 225, no. 5, pp. 915–934, 1999. View at Google Scholar · View at Scopus
  6. P. Malekzadeh and S. A. Shahpari, “Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM,” Thin-Walled Structures, vol. 43, no. 7, pp. 1037–1050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Hou, G. W. Wei, and Y. Xiang, “DSC-Ritz method for the free vibration analysis of Mindlin plates,” International Journal for Numerical Methods in Engineering, vol. 62, no. 2, pp. 262–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Xiang, S. K. Lai, and L. Zhou, “DSC-element method for free vibration analysis of rectangular Mindlin plates,” International Journal of Mechanical Sciences, vol. 52, no. 4, pp. 548–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. Hashemi and M. Arsanjani, “Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates,” International Journal of Solids and Structures, vol. 42, no. 3-4, pp. 819–853, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. H. Hashemi, K. Khorshidi, and H. Rokni Damavandi Taher, “Exact acoustical analysis of vibrating rectangular plates with two opposite edges simply supported via Mindlin plate theory,” Journal of Sound and Vibration, vol. 322, no. 4-5, pp. 883–900, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Gorman, “Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method,” Journal of Sound and Vibration, vol. 207, no. 3, pp. 335–350, 1997. View at Google Scholar · View at Scopus
  12. F. Ohya, M. Ueda, T. Uchiyama, and M. Kikuchi, “Free vibration analysis by the superposition method of rectangular Mindlin plates with internal columns resting on uniform elastic edge supports,” Journal of Sound and Vibration, vol. 289, no. 1-2, pp. 1–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. W. L. Li, “Free vibrations of beams with general boundary conditions,” Journal of Sound and Vibration, vol. 237, no. 4, pp. 709–725, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. W. L. Li, “Vibration analysis of rectangular plates with general elastic boundary supports,” Journal of Sound and Vibration, vol. 273, no. 3, pp. 619–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Du, W. L. Li, G. Jin, T. Yang, and Z. Liu, “An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges,” Journal of Sound and Vibration, vol. 306, no. 3–5, pp. 908–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. L. Li, X. Zhang, J. Du, and Z. Liu, “An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports,” Journal of Sound and Vibration, vol. 321, no. 1-2, pp. 254–269, 2009. View at Publisher · View at Google Scholar · View at Scopus