Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014, Article ID 509024, 7 pages
http://dx.doi.org/10.1155/2014/509024
Review Article

Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

Department of Mechanical Engineering, Islamic Azad University, Shadegan Branch, Fatholmobin Bl, Shadegan, Khuzestan 6431863758, Iran

Received 2 November 2013; Revised 14 February 2014; Accepted 2 March 2014; Published 17 March 2014

Academic Editor: Hongyi Li

Copyright © 2014 Mohammad Amin Rashidifar and Darvish Ahmadi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Gaudenzi, R. Carbonaro, and E. Benzi, “Control of beam vibrations by means of piezoelectric devices: theory and experiments,” Composite Structures, vol. 50, no. 4, pp. 373–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Wang and C. M. Wang, “A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures,” Journal of Sound and Vibration, vol. 242, no. 3, pp. 507–518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Narayanan and V. Balamurugan, “Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,” Journal of Sound and Vibration, vol. 262, no. 3, pp. 529–562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. X. Xu and T. S. Koko, “Finite element analysis and design of actively controlled piezoelectric smart structures,” Finite Elements in Analysis and Design, vol. 40, no. 3, pp. 241–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-C. Lin and M. H. Nien, “Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors,” Composite Structures, vol. 70, no. 2, pp. 170–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Jacquet-Richardet, Bladed Assemblies Vibration, Laboratoire de Mécanique des Structures, Institut National des Sciences Appliquées, Lyon, France, 1997.
  7. F. M. Karadal, G. Seber, M. Sahin, V. Nalbantoglu, and Y. Yaman, “State space representation of smart structures under unsteady aerodynamic loading,” in Proceedings of the 4th International Aerospace Conference, Ankara, Turkey, 2007, AIAC-2007-034.
  8. A. Rahi, M. Shahravi, and D. Ahamdi, “The effects of airfoil camber on flutter suppression regarding Timoshenko beam theory,” in Proceedings of the International Conference on Mechanical and Aerospace Engineering, Amsterdam, The Netherlands, 2011.
  9. J. S. Mitchell, An Introduction to Machinery Analysis and Monitoring, chapter 1, Pennwell Publishing, Tulsa, Oklahoma, 2nd edition, 1993.