Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014 (2014), Article ID 523675, 14 pages
http://dx.doi.org/10.1155/2014/523675
Research Article

A Study on Instantaneous Time-Frequency Methods for Damage Detection of Nonlinear Moment-Resisting Frames

School of Civil Engineering, Iran University of Science & Technology, P.O. Box 16765-163, Narmak, Tehran, Iran

Received 9 April 2013; Accepted 14 June 2013; Published 13 March 2014

Academic Editor: Gyuhae Park

Copyright © 2014 Ehsan Darvishan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Cawley, “Non-destructive testing—current capabilities and future directions,” Journal of Materials Design and Applications, Proceedings of the Institution of Mechanical Engineers L, vol. 215, no. 4, pp. 213–223, 2001. View at Google Scholar · View at Scopus
  2. C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philosophical Transactions of the Royal Society A, vol. 359, no. 1778, pp. 131–149, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. C. Chang, A. Flatau, and S. C. Liu, “Review paper: health monitoring of civil infrastructure,” Structural Health Monitoring, vol. 2, no. 3, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998. View at Google Scholar · View at Scopus
  5. W. Fan and P. Qiao, “Vibration-based damage identification methods: a review and comparative study,” Structural Health Monitoring, vol. 10, no. 1, pp. 83–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. L. Xu and J. Chen, “Structural damage detection using empirical mode decomposition: experimental investigation,” Journal of Engineering Mechanics, vol. 130, no. 11, pp. 1279–1288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. N. Yang, Y. Lei, S. Lin, and N. Huang, “Hilbert-Huang based approach for structural damage detection,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 85–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Rezaei and F. Taheri, “Damage identification in beams using empirical mode decomposition,” Structural Health Monitoring, vol. 10, no. 3, pp. 261–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Chen, “Application of empirical mode decomposition in structural health monitoring: some experience,” Advances in Adaptive Data Analysis, vol. 1, no. 4, pp. 601–621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Liu, X. Wang, S. Yuan, and G. Li, “On Hilbert-Huang transform approach for structural health monitoring,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 8-9, pp. 721–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Lin and F. Chu, “Feature extraction of AE characteristics in offshore structure model using Hilbert-Huang transform,” Measurement, vol. 44, no. 1, pp. 46–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. W.-K. Hsu, D.-J. Chiou, C.-W. Chen, M.-Y. Liu, W.-L. Chiang, and P.-C. Huang, “Sensitivity of initial damage detection for steel structures using the Hilbert-Huang transform method,” Journal of Vibration and Control, 2012. View at Publisher · View at Google Scholar
  13. Y. L. Xu, S. W. Chen, and R. C. Zhang, “Modal identification of Di Wang building under Typhoon York using the Hilbert-Huang transform method,” Structural Design of Tall Buildings, vol. 12, no. 1, pp. 21–47, 2003. View at Google Scholar · View at Scopus
  14. A. Bouchikhi, A.-O. Boudraa, S. Benramdane, and E.-H. Diop, “Empirical mode decomposition and some operators to estimate instantaneous frequency: a comparative study,” in Proceedings of the 3rd International Symposium on Communications, Control, and Signal Processing (ISCCSP '08), pp. 608–613, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Saadat, M. N. Noori, G. D. Buckner, T. Furukawa, and Y. Suzuki, “Structural health monitoring and damage detection using an Intelligent Parameter varying (IPV) technique,” International Journal of Non-Linear Mechanics, vol. 39, no. 10, pp. 1687–1697, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Xia, System identification and damage detection of nonlinear structures [Ph.D. dissertation], University of California, Irvine, Calif, USA, 2011.
  17. A. Gupta and H. Krawinkler, “Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4.3),” John A. Blume Earthquake Engineering Research Center Report 132, Stanford University, 1999. View at Google Scholar
  18. N. E. Huang, S. R. Long, and Z. Shen, “The mechanism for frequency downshift in nonlinear wave evolution,” Advances in Applied Mechanics, vol. 32, pp. 59–117, 1996. View at Publisher · View at Google Scholar
  19. N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no. 1971, pp. 903–995, 1998. View at Google Scholar · View at Scopus
  20. P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Transactions on Signal Processing, vol. 41, no. 4, pp. 1532–1550, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Salzenstein, A.-O. Boudraa, and J.-C. Cexus, “Generalized higher-order nonlinear energy operators,” Journal of the Optical Society of America A, vol. 24, no. 12, pp. 3717–3727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, “On instantaneous frequency,” Advances in Adaptive Data Analysis, vol. 1, no. 2, pp. 177–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Uniform Building Code (UBC), “Uniform building code,” in Proceedings of the International Conference of Building Officials (ICBO '94), Whittier, Calif, USA, 1994.
  24. FEMA-267, Interim Guidelines, Inspection, Evaluation, Repair, Upgrade and Design of Welded Moment Resisting Steel Structures, The SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC, USA, 1995.
  25. F. McKenna, G. L. Fenves, and M. H. Scott, OpenSees: Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Center, University of California, Berkeley, Calif, USA, 2006.
  26. MATLAB User’s Guide, vol. 4, The MathWorks Inc., Natick, Mass, USA, 1998.
  27. V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Vamvatsikos and C. Allin Cornell, “Incremental dynamic analysis,” Earthquake Engineering and Structural Dynamics, vol. 31, no. 3, pp. 491–514, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. FEMA, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA-350, SAC Joint Venture, Federal Emergency Management Agency, Washington, DC, USA, 2000.
  30. N. Cheraghi and F. Taheri, “A damage index for structural health monitoring based on the empirical mode decomposition,” Journal of Mechanics of Materials and Structures, vol. 2, no. 1, pp. 43–62, 2007. View at Google Scholar · View at Scopus
  31. J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. View at Publisher · View at Google Scholar
  32. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987. View at Google Scholar · View at Scopus
  33. FEMA, Quantification of Building Seismic Performance Factors, FEMA P-695, Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, USA, 2009.
  34. C. A. Cornell, F. Jalayer, R. O. Hamburger, and D. A. Foutch, “Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines,” Journal of Structural Engineering, vol. 128, no. 4, pp. 526–533, 2002. View at Publisher · View at Google Scholar · View at Scopus