Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014 (2014), Article ID 717465, 15 pages
http://dx.doi.org/10.1155/2014/717465
Research Article

Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

1School of Mechatronics and Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
3Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, Xi’an 710021, China

Received 15 March 2013; Accepted 5 August 2013; Published 5 March 2014

Academic Editor: Valder Steffen

Copyright © 2014 Shaojiang Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Zhang, B. Li, and S. S. Mi, “Bearing fault detection using multi-scale fractal dimensions based on morphological covers,” Shock and Vibration, vol. 19, no. 6, pp. 1373–1383, 2012. View at Publisher · View at Google Scholar
  2. S. Dong and T. Luo, “Bearing degradation process prediction based on the PCA and optimized LS-SVM model,” Measurement, vol. 46, pp. 3143–3152, 2013. View at Publisher · View at Google Scholar
  3. L. L. Jiang, Y. L. Liu, X. J. Li, and A. Chen, “Degradation assessment and fault diagnosis for roller bearing based on AR model and fuzzy cluster analysis,” Shock and Vibration, vol. 18, no. 1-2, pp. 127–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Yu, “Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models,” Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2573–2588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Yan, C. Z. Guo, and X. Wang, “A dynamic multi-scale Markov model based methodology for remaining life prediction,” Mechanical Systems and Signal Processing, vol. 25, no. 4, pp. 1364–1376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Ocak, K. A. Loparo, and F. M. Discenzo, “Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics,” Journal of Sound and Vibration, vol. 302, no. 4-5, pp. 951–961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Sun, Z. S. Zhang, and Z. J. He, “Research on bearing life prediction based on support vector machine and its application,” Journal of Physics, vol. 305, no. 1, Article ID 012028, 2011. View at Publisher · View at Google Scholar
  8. J. Wang, G. H. Xu, Q. Zhang, and L. Liang, “Application of improved morphological filter to the extraction of impulsive attenuation signals,” Mechanical Systems and Signal Processing, vol. 23, no. 1, pp. 236–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. B. Zhan and J. P. Yin, “Robust local tangent space alignment via iterative weighted PCA,” Neurocomputing, vol. 74, no. 11, pp. 1985–1993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wang, W. Jiang, and J. Gou, “Extended local tangent space alignment for classification,” Neurocomputing, vol. 77, no. 1, pp. 261–266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Dong, B. Tang, and R. Chen, “Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine,” Measurement, vol. 46, no. 10, pp. 4189–4199, 2013. View at Publisher · View at Google Scholar
  12. Y. Qin, B. P. Tang, and J. X. Wang, “Higher-density dyadic wavelet transform and its application,” Mechanical Systems and Signal Processing, vol. 24, no. 3, pp. 823–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Moosavian, H. Ahmadi, and A. Tabatabaeefar, “Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing,” Shock and Vibration, vol. 20, no. 2, pp. 263–272, 2013. View at Publisher · View at Google Scholar
  14. T. Ghidini and C. Dalle Donne, “Fatigue life predictions using fracture mechanics methods,” Engineering Fracture Mechanics, vol. 76, no. 1, pp. 134–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Marble and B. P. Morton, “Predicting the remaining life of propulsion system bearings,” in Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Mont, USA, March 2006. View at Scopus
  16. Z. G. Tian, L. N. Wong, and N. M. Safaei, “A neural network approach for remaining useful life prediction utilizing both failure and suspension histories,” Mechanical Systems and Signal Processing, vol. 24, no. 5, pp. 1542–1555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Caesarendra, A. Widodo, and B. Yang, “Combination of probability approach and support vector machine towards machine health prognostics,” Probabilistic Engineering Mechanics, vol. 26, no. 2, pp. 165–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, “Intelligent prognostics tools and e-maintenance,” Computers in Industry, vol. 57, no. 6, pp. 476–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Q. Huang, L. F. Xi, X. L. Li, C. Richard Liu, H. Qiu, and J. Lee, “Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods,” Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 193–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. W. Fei and G. C. Bai, “Wavelet correlation feature scale entropy and fuzzy support vector machine approach for aeroengine whole-body vibration fault diagnosis,” Shock and Vibration, vol. 20, no. 2, pp. 341–349, 2013. View at Publisher · View at Google Scholar
  21. P. C. Gonçalves, A. R. Fioravanti, and J. C. Geromel, “Markov jump linear systems and filtering through network transmitted measurements,” Signal Processing, vol. 90, no. 10, pp. 2842–2850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. N. Jiang, S. Y. Wang, and S. L. Tang, “Feedback analysis of tunnel construction using a hybrid arithmetic based on Support Vector Machine and Particle Swarm Optimisation,” Automation in Construction, vol. 20, no. 4, pp. 482–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. V. T. Tran, B. Yang, and A. C. C. Tan, “Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems,” Expert Systems with Applications, vol. 36, no. 5, pp. 9378–9387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Marcellino, J. H. Stock, and M. W. Watson, “A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series,” Journal of Econometrics, vol. 135, no. 1-2, pp. 499–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Cao, “Practical method for determining the minimum embedding dimension of a scalar time series,” Physica D, vol. 110, no. 1-2, pp. 43–50, 1997. View at Google Scholar · View at Scopus
  26. F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. A. Rand and L. S. Young, Eds., pp. 366–381, Springer, New York, NY, USA, 1981. View at Google Scholar
  27. A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Physical Review A, vol. 33, no. 2, pp. 1134–1140, 1986. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kohonen, Self-Organizing Maps, Springer, Berlin, Germany, 1995.
  29. J. Lee, H. Qiu, G. Yu, and J. Lin, “Rexnord Technical Services, “Bearing Data Set”, IMS, University of Cincinnati, NASA Ames Prognostics Data Repository,” NASA Ames, Moffett Field, CA, http://ti.arc.nasa.gov/project/prognostic-data-repository/.
  30. H. Mohkami, R. Hooshmand, and A. Khodabakhshian, “Fuzzy optimal placement of capacitors in the presence of nonlinear loads in unbalanced distribution networks using BF-PSO algorithm,” Applied Soft Computing Journal, vol. 11, no. 4, pp. 3634–3642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. X. D. Zhang, R. G. Xu, C. Kwan, S. Y. Liang, Q. Xie, and L. Haynes, “An integrated approach to bearing fault diagnostics and prognostics,” in Proceedings of the American Control Conference (ACC '05), pp. 2750–2755, Portland, Ore, USA, June 2005. View at Scopus
  32. C. Sun, Z. S. Zhang, and Z. J. He, “Research on bearing life prediction based on support vector machine and its application,” Journal of Physics, vol. 305, no. 1, Article ID 012028, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus