Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2015, Article ID 204609, 8 pages
http://dx.doi.org/10.1155/2015/204609
Research Article

Dynamic Assessment of Vibration of Tooth Modification Gearbox Using Grey Bootstrap Method

1School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China

Received 28 May 2015; Revised 3 August 2015; Accepted 4 August 2015

Academic Editor: Jussi Sopanen

Copyright © 2015 Hui-liang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Fan, R. S. DaFoe, and J. W. Swanger, “Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears,” Journal of Mechanical Design, vol. 130, no. 7, Article ID 072601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Argyris, M. De Donno, and F. L. Litvin, “Computer program in Visual Basic language for simulation of meshing and contact of gear drives and its application for design of worm gear drive,” Computer Methods in Applied Mechanics and Engineering, vol. 189, no. 2, pp. 595–612, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C.-K. Lee, “Manufacturing process for a cylindrical crown gear drive with a controllable fourth order polynomial function of transmission error,” Journal of Materials Processing Technology, vol. 209, no. 1, pp. 3–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Lu, C.-C. Zhu, C.-S. Song, and H.-X. Wang, “Coupled nonlinear dynamic characteristics analysis and noise pre-estiation of a large burden marine gearbox,” Journal of Vibration and Shock, vol. 28, no. 4, pp. 76–80, 2009. View at Google Scholar · View at Scopus
  5. S. C. Kostic and M. Ognjanovic, “The noise structure of gear transmission units and the role of gearbox walls,” FME Transactions, vol. 35, pp. 105–112, 2007. View at Google Scholar
  6. C. Yong, “Studies on noise and vibration of planetary gear drives for automatic transmission of transmission of passenger cars,” Japan Machinery Essays, vol. 66, no. 642, pp. 634–639, 2000. View at Google Scholar
  7. M. Kato, K. Inoue, and K. Shibata, “Evaluation of sound power radiated by a gearbox,” in Proceedings of the International Gearing Conference (Inter Gearing '94), pp. 69–74, Newcastle, UK, September 1994.
  8. J.-X. Zhou, W.-L. Sun, and X.-J. Wan, “Fornula-fitting method for predicting gear reducer noise radiation,” Journal of Vibration and Shock, vol. 33, no. 7, pp. 174–180, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Tuma, “Gearbox noise and vibration prediction and control,” International Journal of Acoustics and Vibrations, vol. 14, no. 2, pp. 1–11, 2009. View at Google Scholar · View at Scopus
  10. X. T. Xia, X. Y. Chen, and Y. Z. Zhang, “Dynamic prediction for manufacturing errors using grey bootstrp,” Journal of Sichuan University: Engineering Science, vol. 39, no. 3, pp. 160–165, 2007. View at Google Scholar
  11. Z. Y. Wang, L. Y. Ge, J. Tong, and T. Xi, “Error predicting for material Brinell hardness measurement of poor information based on grey bootstrap method,” Journal of Beijing University of Aeronautics and Astronautics, vol. 36, no. 5, pp. 524–528, 2010. View at Google Scholar · View at Scopus
  12. X. T. Xia, X. Y. Chen, and Y. Z. Zhang, “Dynamic assessment and diagnosis of vibration of rolling bearings using grey bootstrap,” Journal of Aerospace Power, vol. 22, no. 1, pp. 156–162, 2007. View at Google Scholar
  13. Z. Y. Wang, “Novel uncertainty-evaluation method of virtual instrument small sample size,” Journal Testing and Evaluation, vol. 36, no. 3, pp. 101454–101461, 2008. View at Google Scholar
  14. L. Y. Ge, W. Zhao, and Z. F. Xu, “Error predicting for dynamic measurement of poor information based on grey bootstrap method,” Transactions of the Chinese Society of Agricultural Machinery, vol. 42, no. 7, pp. 210–219, 2011. View at Google Scholar · View at Scopus
  15. K.-N. Wei, L.-G. Yao, and Z.-H. Wu, “Research on products life cycle prediction based on grey theory,” Computer Integrated Manufacturing Systems, vol. 11, no. 10, pp. 1491–1495, 2005. View at Google Scholar · View at Scopus
  16. E. T. Hua, K. Zhou, and Y. L. Fei, “Multi-objective optimization for automotive door parameters based on grey theory,” Computer Integrated Manufacturing Systems, vol. 18, no. 3, pp. 486–491, 2012. View at Google Scholar
  17. J. L. Deng, “Introduction to grey system theory,” The Journal o f Grey System, vol. 1, no. 1, pp. 1–24, 1989. View at Google Scholar
  18. B. Efron, “Bootstrap methods,” The Annals of Statistics, vol. 7, no. 1, pp. 1–36, 1979. View at Google Scholar
  19. J. J. Reeves, “Bootstrap prediction intervals for ARCH models,” International Journal of Forecasting, vol. 21, no. 2, pp. 237–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H.-L. Wang, X.-Z. Deng, J.-J. Yang, K. Xu, J.-X. Su, and Q. Chen, “Form grinding and experiment on segment topographic modification gear,” Journal of Aerospace Power, vol. 29, no. 12, pp. 3000–3008, 2014. View at Publisher · View at Google Scholar · View at Scopus