Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2016, Article ID 1212457, 14 pages
http://dx.doi.org/10.1155/2016/1212457
Research Article

Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted -Nearest Neighbor Classifier under Assembled Matrix Distance Metric

1School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
2Department of Mechanical and Dynamic Engineering, Harbin University of Science and Technology, Harbin 150080, China

Received 15 June 2016; Revised 21 October 2016; Accepted 24 October 2016

Academic Editor: Fiorenzo A. Fazzolari

Copyright © 2016 Fen Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, vol. 35, no. 1-2, pp. 108–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Feng, M. Liang, and F. Chu, “Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples,” Mechanical Systems and Signal Processing, vol. 38, no. 1, pp. 165–205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Lei, J. Lin, M. J. Zuo, and Z. He, “Condition monitoring and fault diagnosis of planetary gearboxes: a review,” Measurement, vol. 48, no. 1, pp. 292–305, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Wang, J. Xiang, R. Markert, and M. Liang, “Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications,” Mechanical Systems and Signal Processing, vol. 66-67, pp. 679–698, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Li, X. Yan, Z. Tian, C. Yuan, Z. Peng, and L. Li, “Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis,” Measurement, vol. 46, no. 1, pp. 259–271, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Zhang, W. Ma, J. Lin, L. Ma, and X. Jia, “Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence,” Measurement, vol. 59, pp. 73–87, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Li, X. Yan, C. Yuan, Z. Peng, and L. Li, “Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method,” Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2589–2607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. W. Ji and J. P. Ye, “Generalized linear discriminant analysis: a unified framework and efficient model selection,” IEEE Transactions on Neural Networks, vol. 19, no. 10, pp. 1768–1782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. F. Cox and M. A. Cox, Multi-Dimensional Scaling, Chapman & Hall, London, UK, 1994.
  10. J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Y. Zhang and H. Y. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment,” SIAM Journal on Scientific Computing, vol. 26, no. 1, pp. 313–338, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. F. Li, B. Tang, and R. Yang, “Rotating machine fault diagnosis using dimension reduction with linear local tangent space alignment,” Measurement: Journal of the International Measurement Confederation, vol. 46, no. 8, pp. 2525–2539, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Ding, Q. He, and N. Luo, “A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification,” Journal of Sound and Vibration, vol. 335, pp. 367–383, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Wen, R. X. Gao, and W. Cheng, “Planetary gearbox fault diagnosis using envelope manifold demodulation,” Shock and Vibration, vol. 2016, Article ID 3952325, 13 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Advances in Neural Information Processing Systems, pp. 499–506, 2005. View at Google Scholar
  18. G. Dai and D.-Y. Yeung, “Tensor embedding methods,” in Proceedings of the Neural Conference on Artificial Intelligence, pp. 330–335, July 2006. View at Scopus
  19. X. Li, S. Lin, S. Yan, and D. Xu, “Discriminant locally linear embedding with high-order tensor data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 2, pp. 342–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Lee and H. Park, “Probabilistic learning of similarity measures for tensor PCA,” Pattern Recognition Letters, vol. 33, no. 10, pp. 1364–1372, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Zuo, D. Zhang, and K. Wang, “An assembled matrix distance metric for 2DPCA-based image recognition,” Pattern Recognition Letters, vol. 27, no. 3, pp. 210–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Saravanan and K. I. Ramachandran, “Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN),” Expert Systems with Applications, vol. 37, no. 6, pp. 4168–4181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Chen, B. Tang, T. Song, and L. Li, “Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization,” Measurement, vol. 47, no. 1, pp. 576–590, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Saravanan, S. Cholairajan, and K. I. Ramachandran, “Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique,” Expert Systems with Applications, vol. 36, no. 2, pp. 3119–3135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Yu, M. Liu, and H. Wu, “Local preserving projections-based feature selection and Gaussian mixture model for machine health assessment,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 225, no. 7, pp. 1703–1717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Stoklasa, T. Majtner, and D. Svoboda, “Efficient k-NN based HEp-2 cells classifier,” Pattern Recognition, vol. 47, no. 7, pp. 2409–2418, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Li, J. Wang, B. Tang, and D. Tian, “Life grade recognition method based on supervised uncorrelated orthogonal locality preserving projection and K-nearest neighbor classifier,” Neurocomputing, vol. 138, pp. 271–282, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967. View at Publisher · View at Google Scholar
  29. J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Gates, “The reduced nearest neighbor rule,” IEEE Transactions on Information Theory, vol. 18, no. 3, pp. 431–433, 1972. View at Publisher · View at Google Scholar
  31. B. Samanta, “Gear fault detection using artificial neural networks and support vector machines with genetic algorithms,” Mechanical Systems and Signal Processing, vol. 18, no. 3, pp. 625–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Lei, Z. He, Y. Zi, and X. Chen, “New clustering algorithm-based fault diagnosis using compensation distance evaluation technique,” Mechanical Systems and Signal Processing, vol. 22, no. 2, pp. 419–435, 2008. View at Publisher · View at Google Scholar · View at Scopus