Table of Contents
Thrombosis
Volume 2012 (2012), Article ID 104707, 9 pages
http://dx.doi.org/10.1155/2012/104707
Research Article

Aspirin Prophylaxis for the Prevention of Thrombosis: Expectations and Limitations

1Lillehei Heart Institute, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
2Departments of Pathology and Pharmacology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA

Received 16 June 2011; Accepted 31 October 2011

Academic Editor: Christian Doutremepuich

Copyright © 2012 Gundu H. R. Rao and Jawad Fareed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sherry and A. Scriabine, Platelets and Thrombosis, Cambridge University Press, Cambridge, Mass, USA, 1999.
  2. G. H. R. Rao and A. T. Rao, “Pharmacology of platelet inhibitory drugs,” Indian Journal of Physiology and Pharmacology, vol. 38, pp. 69–84, 1994. View at Google Scholar
  3. G. H. R. Rao, “Signal transduction, second messengers and platelet pharmacology,” Pharmacology, vol. 13, pp. 39–44, 1994. View at Google Scholar
  4. Antithrombotic Trialists’ Collaboration, “Collaborative metaanalysis of randomized trials of anti-platelet therapy for prevention of death, myocardial infarction and stroke in high risk patients,” British Medical Journal, vol. 324, pp. 71–86, 2002. View at Google Scholar
  5. G. Weissmann, “Aspirin,” Scientific American, vol. 264, no. 1, pp. 84–90, 1991. View at Google Scholar · View at Scopus
  6. J. R. Vane, “Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs,” Nature, vol. 231, no. 25, pp. 232–235, 1971. View at Google Scholar · View at Scopus
  7. J. R. Vane, R. J. Flower, and R. M. Botting, “History of aspirin and its mechanism of action,” Stroke, vol. 21, no. 12, pp. IV12–IV23, 1990. View at Google Scholar · View at Scopus
  8. S. H. Ferreira and J. R. Vane, “Newer aspects of the mode of action ofnon-steroidal anti-inflammatory drugs,” Annual Review of Pharmacology and Toxicology, vol. 14, pp. 57–73, 1974. View at Google Scholar
  9. M. Hamberg, J. Svensson, and B. Samuelsson, “Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 2994–2998, 1975. View at Google Scholar · View at Scopus
  10. A. J. Marcus, “Aspirin as an antithrombotic medication,” The New England Journal of Medicine, vol. 309, no. 24, pp. 1515–1517, 1983. View at Google Scholar · View at Scopus
  11. G. J. Roth and D. C. Calverley, “Aspirin, platelets, and thrombosis: theory and practice,” Blood, vol. 83, no. 4, pp. 885–898, 1994. View at Google Scholar · View at Scopus
  12. G. J. Roth, N. Stanford, and P. W. Majerus, “Acetylation of prostaglandin synthase by aspirin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 3073–3076, 1975. View at Google Scholar · View at Scopus
  13. E. A. Meade, W. L. Smith, and D. L. DeWitt, “Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti- inflammatory drugs,” The Journal of Biological Chemistry, vol. 268, no. 9, pp. 6610–6614, 1993. View at Google Scholar
  14. J. W. Burch, N. Stanford, and P. W. Majerus, “Inhibition of platelet prostaglandin synthetase by oral aspirin,” Journal of Clinical Investigation, vol. 61, no. 2, pp. 314–319, 1978. View at Google Scholar · View at Scopus
  15. I. A. G. Reilly and G. A. Fitzgerald, “Aspirin in cardiovascular disease,” Drugs, vol. 35, no. 2, pp. 154–176, 1988. View at Google Scholar · View at Scopus
  16. K. M. Wilson, D. M. Siebert, E. M. Duncan, A. A. Somogyi, J. V. Lloyd, and F. Bochner, “Effect of aspirin infusions on platelet function in humans,” Clinical Science, vol. 79, no. 1, pp. 37–42, 1990. View at Google Scholar · View at Scopus
  17. L. J. McLeod, M. S. Roberts, P. A. Cossum et al., “The effects ofdifferent doses of some acetyl salicylic acid formulations onplatelet function and bleeding times in healthy subjects,” Journal of Haematology, vol. 36, pp. 379–384, 1986. View at Google Scholar
  18. G. Masotti, G. Galanti, and L. Poggesi, “Differential inhibition of prostacyclin production and platelet aggregation by aspirin,” The Lancet, vol. 2, no. 8154, pp. 1213–1216, 1979. View at Google Scholar
  19. Steering Committee of the Physicians Health Study Research Group, “Preliminary Report: findings from the aspirin component of the ongoing physicians’ health study,” The New England Journal of Medicine, vol. 318, pp. 262–264, 1988. View at Google Scholar
  20. Steering Committee of the Physicians Health Study Research Group, “Final report,” The New England Journal of Medicine, vol. 321, pp. 129–135, 1989. View at Google Scholar
  21. T. J. Hallam, A. Sanchez, and T. J. Rink, “Stimulus-response coupling in human platelets. Changes evoked by platelet-activating factor in cytoplasmic free calcium monitored with the fluorescent calcium indicator quin2,” Biochemical Journal, vol. 218, no. 3, pp. 819–827, 1984. View at Google Scholar · View at Scopus
  22. M. B. Zucker and V. T. Nachmias, “Platelet activation,” Arteriosclerosis, vol. 5, no. 1, pp. 2–18, 1985. View at Google Scholar · View at Scopus
  23. H. Holmsen, “Platelet metabolism and activation,” Seminars in Hematology, vol. 22, no. 3, pp. 219–240, 1985. View at Google Scholar · View at Scopus
  24. W. Siess, “Molecular mechanism of platelet activation,” Physiological Reviews, vol. 70, pp. 115–164, 1990. View at Google Scholar
  25. G. H. R. Rao, “Physiology of blood platelet activation,” Indian Journal of Physiology and Pharmacology, vol. 37, pp. 263–275, 1993. View at Google Scholar
  26. G. H. R. Rao, “Signal transduction, second messengers, and platelet function,” Journal of Laboratory and Clinical Medicine, vol. 121, no. 1, pp. 18–20, 1993. View at Google Scholar · View at Scopus
  27. M. A. Packham, “Role of platelets in thrombosis and hemostasis,” Canadian Journal of Physiology and Pharmacology, vol. 72, pp. 278–284, 1993. View at Google Scholar
  28. G. H. R. Rao, G. G. Johnson, K. R. Reddy, and J. G. White, “Ibuprofen protects platelet cyclooxygenase from irreversible inhibition by aspirin,” Arteriosclerosis, vol. 3, no. 4, pp. 383–388, 1983. View at Google Scholar · View at Scopus
  29. C. Patrono, “Aspirin as an antiplatelet drug,” The New England Journal of Medicine, vol. 330, no. 18, pp. 1287–1294, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. P. Hanley, J. Bevan, S. R. Cockbill, and S. Heptinstall, “Differential inhibition by low-dose aspirin of human venous prostacyclin synthesis and platelet thromboxane synthesis,” The Lancet, vol. 2, no. 8227, pp. 969–971, 1981. View at Google Scholar · View at Scopus
  31. R. M. Keimowitz, G. Pulvermacher, G. Mayo, and D. J. Fitzgerald, “Transdermal modification of platelet function: a dermal aspirin preparation selectively inhibits platelet cyclooxygenase and preserves prostacyclin biosynthesis,” Circulation, vol. 88, no. 2, pp. 556–561, 1993. View at Google Scholar · View at Scopus
  32. R. J. Clarke, G. Mayo, P. Price, and G. A. FitzGerald, “Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin,” The New England Journal of Medicine, vol. 325, no. 16, pp. 1137–1141, 1991. View at Google Scholar · View at Scopus
  33. Antithrombotic Trialists' (ATT) Collaboration, “The Aspirin Papers,” British Medical Journal, vol. 308, pp. 71–72, 1994, 81–106. View at Google Scholar
  34. V. Fuster, M. L. Dyken, P. S. Vokonas, and C. Hennekens, “Aspirin as a therapeutic agent in cardiovascular disease,” Circulation, vol. 87, no. 2, pp. 659–675, 1993. View at Google Scholar · View at Scopus
  35. G. H. R. Rao, R. K. Reddy, and J. G. White, “Low dose aspirin, platelet function and prostaglandin synthesis: influence of epinephrine and alpha adrenergic blockade,” Prostaglandins and Medicine, vol. 6, no. 5, pp. 485–494, 1981. View at Google Scholar
  36. J. H. Vial, L. J. McLeod, M. S. Roberts, and P. R. Seville, “Selective inhibition of platelet cyclooxygenase with controlled release, low-dose aspirin,” Australian and New Zealand Journal of Medicine, vol. 20, no. 5, pp. 652–656, 1990. View at Google Scholar · View at Scopus
  37. G. H. R. Rao, E. Radha, G. J. Johnson, and J. G. White, “Enteric-coated aspirin, platelet cyclooxygenase activity and function,” Prostaglandins Leukotrienes and Medicine, vol. 13, no. 3, pp. 341–347, 1984. View at Google Scholar · View at Scopus
  38. M. H. F. Sullivan, A. Zosmer, R. P. Gleeson, and M. G. Elder, “Equivalent inhibition of in vivo platelet function by low dose and high dose aspirin treatment,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 39, no. 4, pp. 319–321, 1990. View at Publisher · View at Google Scholar
  39. P. A. Kyrle, H. G. Eichler, U. Jager, and K. Lechner, “Inhibition of prostacyclin and thromboxane A2 generation by low-dose aspirin at the site of the plug formation in man in vivo,” Circulation, vol. 75, no. 5, pp. 1025–1029, 1987. View at Google Scholar
  40. T. W. Wilson, F. A. McCauley, and H. D. Wells, “Effects of low-dose aspirin on responses to furosemide,” Journal of Clinical Pharmacology, vol. 26, no. 2, pp. 100–105, 1986. View at Google Scholar
  41. P. M. Ridker, N. R. Cook, I. M. Lee et al., “A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women,” The New England Journal of Medicine, vol. 352, no. 13, pp. 1293–1398, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. Demirovic, H. Blackburn, P. G. McGovern, R. Luepker, J. M. Sprafka, and D. Gilbertson, “Sex differences in early mortality after acute myocardial infarction (The Minnesota Heart Survey),” American Journal of Cardiology, vol. 75, no. 16, pp. 1096–1101, 1995. View at Publisher · View at Google Scholar
  43. M. L. Zucker, C. Trowbridge, J. Woodroof et al., “Low- vs high-dose aspirin: effects on platelet function in hyperlipoproteinemic and normal subjects,” Archives of Internal Medicine, vol. 146, no. 5, pp. 921–925, 1986. View at Google Scholar · View at Scopus
  44. G. Davi, M. Averna, I. Catalano et al., “Increased thromboxane biosynthesis in type IIa hypercholesterolemia,” Circulation, vol. 85, no. 5, pp. 1792–1798, 1992. View at Google Scholar · View at Scopus
  45. G. DiMinno, M. J. Silver, A. M. Cerbone, and S. Murphy, “Trial of repeated low-dose aspirin in diabetic angiopathy,” Blood, vol. 68, no. 4, pp. 886–891, 1986. View at Google Scholar · View at Scopus
  46. W. Terres, O. Schuster, W. Kupper, and W. Bleifeld, “Effect of low-dose aspirin on platelets of healthy subjects and of patients with coronary heart disease,” Deutsche Medizinische Wochenschrift, vol. 114, no. 33, pp. 1231–1236, 1989. View at Google Scholar
  47. R. De Caterina, D. Giannessi, W. Bernini et al., “Low-dose aspirin in patients recovering from myocardial infarction. Evidence for a selective inhibition of thromboxane-related platelet function,” European Heart Journal, vol. 6, no. 5, pp. 409–417, 1985. View at Google Scholar · View at Scopus
  48. A. J. Funke Kupper, F. W. A. Verheugt, C. H. Peels, T. W. Galema, W. Den Hollander, and J. P. Roos, “Effect of low dose acetylsalicylic acid on the frequency and hematologic activity of left ventricular thrombus in anterior wall acute myocardial infarction,” American Journal of Cardiology, vol. 63, no. 13, pp. 917–920, 1989. View at Google Scholar
  49. B. B. Weksler, J. L. Kent, and D. Rudolph, “Effects of low dose aspirin on platelet function in patients with recent cerebral ischemia,” Stroke, vol. 16, no. 1, pp. 5–9, 1985. View at Google Scholar · View at Scopus
  50. S. Uchiyama, R. Sone, T. Nagayama et al., “Combination therapy with low-dose aspirin and ticlopidine in cerebral ischemia,” Stroke, vol. 20, no. 12, pp. 1643–1647, 1989. View at Google Scholar · View at Scopus
  51. G. H. R. Rao and J. G. White, “Epinephrine-induced platelet membrane modulation,” in The Platelet Amine Storage, K. M. Myers and C. D. Barnes, Eds., pp. 117–149, CRC Press, Boca Raton, Fla, USA, 1992. View at Google Scholar
  52. G. H. R. Rao, G. J. Johnson, and J. G. White, “Influence of epinephrine on the aggregation response of aspirin-treated platelets,” Prostaglandins and Medicine, vol. 5, no. 1, pp. 45–58, 1980. View at Google Scholar
  53. G. H. R. Rao and J. G. White, “Epinephrine potentiation of arachidonate-induced aggregation of cyclooxygenase-deficient platelets,” American Journal of Hematology, vol. 11, no. 4, pp. 355–366, 1981. View at Google Scholar
  54. G. H. R. Rao and J. G. White, “Role of arachidonic acid metabolism in human platelet activation and irreversible aggregation,” American Journal of Hematology, vol. 19, no. 4, pp. 339–347, 1985. View at Google Scholar
  55. G. H. R. Rao, G. Escolar, and J. G. White, “Epinephrine reverses the inhibitory influence of aspirin on platelet-vessel wall interactions,” Thrombosis Research, vol. 44, no. 1, pp. 65–74, 1986. View at Google Scholar
  56. G. H. R. Rao, G. Escolar, J. Zavoral, and J. G. White, “Influence of adrenergic receptor blockade on aspirin-induced inhibition of platelet function,” Platelets, vol. 1, no. 3, pp. 145–150, 1990. View at Google Scholar
  57. G. H. R. Rao, K. R. Reddy, and J. G. White, “Modification of human platelet response to sodium arachidonate by membrane modulation,” Prostaglandins and Medicine, vol. 6, no. 1, pp. 75–90, 1981. View at Google Scholar
  58. G. H. R. Rao, G. G. Johnson, K. R. Reddy, and J. G. White, “Ibuprofen protects platelet cyclooxygenase from irreversible inhibition by aspirin,” Arteriosclerosis, vol. 3, no. 4, pp. 383–388, 1983. View at Google Scholar
  59. E. W. Jones, S. R. Cockbill, A. J. Cowley et al., “Effects of dazoxiben and low-dose aspirin on platelet behaviour in man,” British Journal of Clinical Pharmacology, vol. 15, supplement 1, pp. 39S–44S, 1983. View at Google Scholar
  60. J. M. Connellan, P. J. Thurlow, B. Barlow et al., “Investigation of alternative mechanisms of collagen-induced platelet activation by using monoclonal antibodies to glycoprotein IIb-IIIa and fibrinogen,” Thrombosis and Haemostasis, vol. 55, no. 2, pp. 153–157, 1986. View at Google Scholar
  61. J. E. Muller and G. H. Tofler, “Triggering and hourly variation of onset of arterial thrombosis,” Annals of Epidemiology, vol. 2, no. 4, pp. 393–405, 1992. View at Google Scholar
  62. A. Pollack, “For Some, Aspirin May Not Help Hearts,” NewYork Times, July 2004.
  63. A. A. Weber, B. Przytulski, A. Schanz, T. Hohlfeld, and K. Schrör, “Towards a definition of aspirin resistance: a typological approach,” Platelets, vol. 13, no. 1, pp. 37–40, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. B. Yilmaz, Y. Balbay, and S. Korkmaz, “Aspirin resistance,” Anadolu Kardiyoloji Dergisi, vol. 4, no. 1, pp. 59–62, 2004. View at Google Scholar · View at Scopus
  65. C. Patrono, B. Coller, G. A. FitzGerald, J. Hirsh, and G. Roth, “Platelet-active drugs: the relationships among dose, effectiveness, and side effects—the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest, vol. 126, no. 3, pp. 234S–264S, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. P. A. Howard, E. C. Suárez, and N. Paquette-Lamontagne, “Aspirin resistance,” Annals of Pharmacotherapy, vol. 36, no. 10, pp. 1620–1624, 2002. View at Google Scholar · View at Scopus
  67. M. Hurlen, I. Seljeflot, and H. Arnesen, “The effect of different antithrombotic regimens on platelet aggregation after myocardial infarction,” Scandinavian Cardiovascular Journal, vol. 32, no. 4, pp. 233–237, 1998. View at Publisher · View at Google Scholar
  68. K. K. Wu and J. C. Hoak, “A new method for the quantitative detection of platelet aggregates in patients with arterial insufficiency,” The Lancet, vol. 2, no. 7886, pp. 924–926, 1974. View at Google Scholar · View at Scopus
  69. P. A. Gum, K. Kottke-Marchant, E. D. Poggio et al., “Profile and prevalence of aspirin resistance in patients with cardiovascular disease,” American Journal of Cardiology, vol. 88, no. 3, pp. 230–235, 2001. View at Publisher · View at Google Scholar
  70. P. A. Gum, K. Kottke-Marchant, P. A. Welsh, J. White, and E. J. Topol, “A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease,” Journal of the American College of Cardiology, vol. 41, no. 6, pp. 961–965, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. E. N. Deliargyris and H. Boudoulas, “Aspirin Resistance,” Hellenic Journal of Cardiology, vol. 45, no. 1, pp. 1–5, 2004. View at Google Scholar · View at Scopus
  72. K. H. Grotemeyer, “Effects of acetyl salicyclic acid in stroke patients; evidence of non-responders in a subpopulation of treated patients,” Thrombosis Research, vol. 63, pp. 587–593, 1991. View at Google Scholar
  73. K. H. Grotemeyer, H. W. Scharafinski, and I. W. Husstedt, “Two-year follow-up of aspirin responder and aspirin non responder. A pilot-study including 180 post-stroke patients,” Thrombosis Research, vol. 71, no. 5, pp. 397–403, 1993. View at Publisher · View at Google Scholar
  74. M. R. Mueller, A. Salat, P. Stangl et al., “Variable platelet response to low-dose ASA and the risk of limb deterioration in patients submitted to peripheral arterial angioplasty,” Thrombosis and Haemostasis, vol. 78, no. 3, pp. 1003–1007, 1997. View at Google Scholar
  75. J. W. Eikelboom, J. Hirsh, J. I. Weitz, M. Johnston, Q. Yi, and S. Yusuf, “Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events,” Circulation, vol. 105, no. 14, pp. 1650–1655, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Smout and G. Stansby, “Aspirin resistance,” British Journal of Surgery, vol. 89, no. 1, pp. 4–5, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. C. M. Helgason, K. M. Bolin, J. A. Hoff et al., “Development of aspirin resistance in persons with previous ischemic stroke,” Stroke, vol. 25, no. 12, pp. 2331–2336, 1994. View at Google Scholar · View at Scopus
  78. N. Zimmermann, A. Wenk, U. Kim et al., “Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery,” Circulation, vol. 108, no. 5, pp. 542–547, 2003. View at Publisher · View at Google Scholar · View at PubMed
  79. D. C. Sane, S. A. McKee, A. I. Malinin, and V. L. Serebruany, “Frequency of Aspirin resistance in patients with congestive heart failure treated with antecedent Aspirin,” American Journal of Cardiology, vol. 90, no. 8, pp. 893–895, 2002. View at Publisher · View at Google Scholar
  80. I. Muller, F. Besta, C. Schulz et al., “Prevalence of Clopidogrelnon-responders among patients with stable angina pectoris scheduled for elective coronary stenting,” Journal of Thrombosis and Haemostasis, vol. 89, pp. 783–787, 2003. View at Google Scholar
  81. R. Altman, H. L. Luciardi, J. Muntaner, and R. N. Herrera, “The antithrombotic profile of aspirin. Aspirin resistance, or simply failure?” Thrombosis Journal, vol. 2, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at PubMed
  82. G. De Gaetano and C. Cerletti, “Aspirin resistance: a revival of platelet aggregation tests?” JTH: Journal of Thrombosis and Haemostasis, vol. 1, no. 9, pp. 2048–2050, 2003. View at Google Scholar
  83. A. Malinin, M. Spergling, B. Muhlestein, S. Steinhubl, and V. Serebruany, “Assessing aspirin responsiveness in subjects with multiple risk factors for vascular disease with a rapid platelet function analyzer,” Blood Coagulation and Fibrinolysis, vol. 15, no. 4, pp. 295–301, 2004. View at Publisher · View at Google Scholar
  84. A. Sambola, M. Heras, G. Escolar et al., “The PFA-100 detects sub-optimal antiplatelet responses in patients on aspirin,” Platelets, vol. 15, no. 7, pp. 439–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. L. Coleman, J. C. Wang, and D. I. Simon, “Determination of individual responses to Aspirin therapy using the Accumetric Ultegra,” The Journal of Near-Patient Testing & Technology, vol. 3, pp. 77–82, 2004. View at Google Scholar
  86. M. Feuring, K. Hasseroth, C. P. Janson et al., “Inhibition of platelet aggregation after intake of acetyl salicylic acid detected by a platelet function analyzer (PFA-100),” International Journal of Clinical Pharmacology and Therapeutics, vol. 37, pp. 584–548, 1999. View at Google Scholar
  87. K. Andersen, M. Hurlen, H. Arnesen, and I. Seljeflot, “Aspirin non-responsiveness as measured by PFA-100 in patients with coronary artery disease,” Thrombosis Research, vol. 108, no. 1, pp. 37–42, 2002. View at Publisher · View at Google Scholar
  88. S. A. McKee, D. C. Sane, and E. N. Deliargyris, “Aspirin resistance in cardiovascular disease: a review of prevalence, mechanisms, and clinical significance,” Thrombosis and Haemostasis, vol. 88, no. 5, pp. 711–715, 2002. View at Google Scholar
  89. J. W. Eikelboom and G. J. Hankey, “Aspirin resistance: a new independent predictor of vascular events?” Journal of the American College of Cardiology, vol. 41, no. 6, pp. 966–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. J. W. Eikelbloom et al., “Incomplete inhibition of thromboxane biosynthesis by acetyl salicylic acid determinants and effects on cardiovascular risk,” Circulation, vol. 118, pp. 1705–1712, 2008. View at Google Scholar
  91. G. Cotter, E. Shemesh, M. Zehavi et al., “Lack of aspirin effect: aspirin resistance or resistance to taking aspirin?” American Heart Journal, vol. 147, no. 2, pp. 293–300, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. P. B. Berger, “Resistance to antiplatelet drugs: is it real orrelevant?” Catheterization and Cardiovascular Interventions, vol. 62, pp. 43–45, 2004. View at Google Scholar
  93. M. Cattaneo, “Aspirin and clopidogrel: efficacy, safety, and the issue of drug resistance,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 11, pp. 1980–1987, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. G. H. R. Rao, “Need for a point-of-care assay for monitoring antiplatelet and antithrombotic therapies,” Stroke, vol. 40, no. 6, pp. 2271–2272, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. F. J. Geske, K. E. Guyer, and G. Ens, “AspirinWorks: a new immunologic diagnostic test for monitoring aspirin effect,” Molecular Diagnosis and Therapy, vol. 12, no. 1, pp. 51–54, 2008. View at Google Scholar · View at Scopus
  96. J. M. Cruz-Fernández, L. López-Bescós, D. García-Dorado et al., “Randomized comparative trial of triflusal and aspirin following acute myocardial infarction,” European Heart Journal, vol. 21, no. 6, pp. 457–465, 2000. View at Publisher · View at Google Scholar · View at PubMed
  97. G. J. Johnson, A. V. Sharada, G. H. R. Rao et al., “Measurement of shear activated platelet aggregate formation in non-anti-coagulated blood: utility in detection of Clopidogrel-Aspirin-induced platelet dysfunction,” Clinical and Applied Thrombosis/Hemostasis. In press.