Table of Contents Author Guidelines Submit a Manuscript
Tuberculosis Research and Treatment
Volume 2012, Article ID 128057, 5 pages
http://dx.doi.org/10.1155/2012/128057
Clinical Study

Comparison of Overnight Pooled and Standard Sputum Collection Method for Patients with Suspected Pulmonary Tuberculosis in Northern Tanzania

1Kibong’oto National Tuberculosis Referral Hospital, P.O. Box 12, Kilimanjaro, Tanzania
2Kilimanjaro Clinical Research Institute and Kilimanjaro Christian Medical College, Kilimanjaro Moshi, Tanzania
3Division of Infectious Diseases and International Health, University of Virginia, Charlotteville, VA 22908, USA

Received 28 September 2011; Accepted 3 January 2012

Academic Editor: Catharina Boehme

Copyright © 2012 Stellah G. Mpagama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Maher, A. Harries, and H. Getahun, “Tuberculosis and HIV interaction in sub-Saharan Africa: impact on patients and programmes; implications for policies,” Tropical Medicine and International Health, vol. 10, no. 8, pp. 734–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Dye, S. Scheele, P. Dolin, V. Pathania, M. C. Raviglione, and The WHO Global Surveillance and Monitoring Project, Global Burden of Tuberculosis, “Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country,” Journal of the American Medical Association, vol. 282, no. 7, pp. 677–686, 1999. View at Publisher · View at Google Scholar
  3. M. J. Reid and N. S. Shah, “Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings,” The Lancet Infectious Diseases, vol. 9, no. 3, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Shenoi, S. Heysell, A. Moll, and G. Friedland, “Multidrug-resistant and extensively drug-resistant tuberculosis: consequences for the global HIV community,” Current Opinion in Infectious Diseases, vol. 22, no. 1, pp. 11–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Elliott, K. Namaambo, B. W. Allen et al., “Negative sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka, Zambia,” Tubercle and Lung Disease, vol. 74, no. 3, pp. 191–194, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Perlman, W. M. El-Sadr, E. T. Nelson et al., “Variation of chest radiographic patterns in pulmonary tuberculosis by degree of human immunodeficiency virus-related immunosuppression. The Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA). The AIDS Clinical Trials Group (ACTG),” Clinical Infectious Diseases, vol. 25, no. 2, pp. 242–246, 1997. View at Google Scholar
  7. A. D. Harries, H. T. Banda, M. J. Boeree et al., “Management of pulmonary tuberculosis suspects with negative sputum smears and normal or minimally abnormal chest radiographs in resource-poor settings,” International Journal of Tuberculosis and Lung Disease, vol. 2, no. 12, pp. 999–1004, 1998. View at Google Scholar · View at Scopus
  8. G. S. Kibiki, B. Mulder, D. van Ven et al., “Laboratory diagnosis of pulmonary tuberculosis in TB and HIV endemic settings and the contribution of real time PCR for M. tuberculosis in bronchoalveolar lavage fluid,” Tropical Medicine and International Health, vol. 12, no. 10, pp. 1210–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Daley, A. Latha, Suzana S. et al., “Risk factors associated with poor quality sputum submission in India,” International Journal of Antimicrobial Agents, vol. 34, p. S17, 2009. View at Google Scholar
  10. M. S. Khan, O. Dar, C. Sismanidis, K. Shah, and P. Godfrey-Faussett, “Improvement of tuberculosis case detection and reduction of discrepancies between men and women by simple sputum-submission instructions: a pragmatic randomised controlled trial,” Lancet, vol. 369, no. 9577, pp. 1955–1960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Merid, M. A. Yassin, L. Yamuah, R. Kumar, H. Engers, and A. Aseffa, “Validation of bleach-treated smears for the diagnosis of pulmonary tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 1, pp. 136–141, 2009. View at Google Scholar · View at Scopus
  12. R. Brindle, J. Odhiambo, and D. Mitchison, “Serial counts of Mycobacterium tuberculosis in sputum as surrogate markers of the sterilising activity of rifampicin and pyrazinamide in treating pulmonary tuberculosis,” BMC Pulmonary Medicine, vol. 1, article 2, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Jindani, C. J. Doré, and D. A. Mitchison, “Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 10, pp. 1348–1354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. H. Diacon, J. S. Maritz, A. Venter et al., “Time to detection of the growth of Mycobacterium tuberculosis in MGIT 960 for determining the early bactericidal activity of antituberculosis agents,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, pp. 1561–1565, 2010. View at Google Scholar
  15. C. Pheiffer, N. M. Carroll, N. Beyers et al., “Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 7, pp. 792–798, 2008. View at Google Scholar · View at Scopus
  16. N. R. Gandhi, N. S. Shah, J. R. Andrews et al., “HIV coinfection in multidrug- and extensively drug-resistant tuberculosis results in high early mortality,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 1, pp. 80–86, 2010. View at Publisher · View at Google Scholar
  17. M. Barnard, H. Albert, G. Coetzee, R. O'Brien, and M. E. Bosman, “Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 7, pp. 787–792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Helb, M. Jones, E. Story et al., “Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology,” Journal of Clinical Microbiology, vol. 48, no. 1, pp. 229–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Alisjahbana, C. R. Van, H. Danusantoso et al., “Better patient instruction for sputum sampling can improve microscopic tuberculosis diagnosis,” International Journal of Tuberculosis and Lung Disease, vol. 9, no. 7, pp. 814–817, 2005. View at Google Scholar · View at Scopus
  20. J. R. Warren, M. O. N. D. Bhattacharya, K. N. F. de Almeida, K. A. T. H. Trakas, and L. R. Peterson, “A minimum 5.0 ml of sputum improves the sensitivity of acid-fast smear for Mycobacterium tuberculosis,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1559–1562, 2000. View at Google Scholar · View at Scopus
  21. D. Gothi and J. M. Joshi, “Clinical and laboratory observations of tuberculosis at a Mumbai (India) clinic,” Postgraduate Medical Journal, vol. 80, no. 940, pp. 97–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Muyoyeta, J. A. Schaap, H. P. De et al., “Comparison of four culture systems for Mycobacterium tuberculosis in the zambian national reference laboratory,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 4, pp. 460–465, 2009. View at Google Scholar · View at Scopus