Abstract

A Taylor type polcrystalline model, together with a new fully implicit time integration scheme have been developed to simulate the evolution of crystallographic texture during the deformation of face centered cubic metals deforming by crystallographic slip. The constitutive equations include a new equation for the evolution of slip system deformation resistance which leads to realistic macroscopic strain hardening behavior. The good predictive capabilities of the constitutive equations and the time integration procedure are demonstrated by comparing numerical simulations against experimental texture measurements and stress-strain results in a series of homogeneous deformation experiments on OFHC copper.