Abstract

The evolution of texture and yield locus of AISI 409 ferritic stainless steel under different deformation paths was analyzed.Texture evolution with plastic deformation was predicted by two models: Taylor (TPG), assuming pencil glide in {hkl}111 slip systems and Viscoplastic under the relaxed constraint assumption (VRC), considering the following slip systems: {110}111, {112}111, and {123}111, selected according to a strain rate sensitivity law. TPG model tends to predict some stronger developments of texture than the VRC model.Predictions of stress–strain curves along different loading paths with TPG and VRC models were very close to experimental results. Texture evolution did not have a significant effect to modify the rate and the isotropy of the strain hardening process of AISI 409 ferritic stainless steel.