Abstract

A new technique for the simulation of microtexture evolution during cold deformation which is based on 2 dimensional (2D) dislocation dynamics is presented. In the simulation all involved dislocations are regarded as infinite straight line detects which are embedded in an otherwise isotropic linear elastic medium. As the model is 2D only edge dislocations are considered.In the first simulation step the net local stresses are derived and used to calculate the resulting dislocation motion. Dislocation multiplication, annihilation and reactions are taken into account. Thermal activation is included. In the second step the local misorientations arising from the dislocation distribution are calculated.This method shows in microscopic detail how misorientations are generated and distributed within grains during plastic deformation.