Ground-based remotely sensed reflectance spectra of hyperspectral resolution were monitored during the growing period of rice under various nitrogen application rates. It was found that reflectance spectrum of rice canopy changed in both wavelength and reflectance as the plants developed. Fifteen characteristic wavebands were identified from the apparent peaks and valleys of spectral reflectance curves, in accordance with the results of the first-order differentiation, measured over the growing season of rice. The bandwidths and center wavelengths of these characteristic wavebands were different among nitrogen treatments. The simplified features by connecting these 15 characteristic wavelengths may be considered as spectral signatures of rice canopy, but spectral signatures varied with developmental age and nitrogen application rates. Among these characteristic wavebands, the changes of the wavelength in band 11 showed a positive linear relationship with application rates of nitrogen fertilizer, while it was a negative linear relationship in band 5. Mean reflectance of wavelengths in bands 1, 2, 3, 5, 11, and 15 was significantly correlated with application rates. Reflectance of these six wavelengths changed nonlinearly after transplanting and could be used in combination to distinguish rice plants subjected to different nitrogen application rates. From the correlation analyses, there are a variety of correlation coefficients for spectral reflectance to leaf nitrogen content in the range of 350-2400 nm. Reflectance of most wavelengths exhibited an inverse correlation with leaf nitrogen content, with the largest negative value (r = �0.581) located at about 1376 nm. Changes in reflectance at 1376 nm to leaf nitrogen content during the growing period were closely related and were best fitted to a nonlinear function. This relationship may be used to estimate and to monitor nitrogen content of rice leaves during rice growth. Reflectance of red light minimum and near-infrared peak and leaf nitrogen content were correlated nonlinearly.