Abstract

Ponds and shallow lakes can be very clear with abundant submerged plants, or very turbid due to a high concentration of phytoplankton and suspended sediment particles. These strongly contrasting ecosystem states have been found to represent alternative attractors with distinct stabilizing feedback mechanisms. In the turbid state, the development of submerged vegetation is prevented by low underwater light levels. The unprotected sediment frequently is resuspended by wave action and by fish searching for food causing a further decrease of transparency. Since there are no plants that could serve as refuges, zooplankton is grazed down by fish to densities insufficient to control algal blooms. In contrast, the clear state in eutrophic shallow lakes is dominated by aquatic macrophytes. The submerged macrophytes prevent sediment resuspension, take up nutrients from the water, and provide a refuge for zooplankton against fish predation. These processes buffer the impacts of increased nutrient loads until they become too high. Consequently, the response of shallow lakes to eutrophication tends to be catastrophic rather than smooth, and various lakes switch back and forth abruptly between a clear and a turbid state repeatedly without obvious external forcing. Importantly, a switch from a turbid to a stable clear state often can be invoked by means of biomanipulation in the form of a temporary reduction of the fish stock.