The Scientific World Journal

The Scientific World Journal / 2002 / Article

Research Article | Open Access

Volume 2 |Article ID 167437 | 7 pages | https://doi.org/10.1100/tsw.2002.90

In Vitro Exposure of Porcine Ovarian Follicular Cells to PCB 153 Alters Steroid Secretion But Not Their Viability—Preliminary Study

Received04 Sep 2001
Revised12 Nov 2001
Accepted04 Dec 2001

Abstract

In our previous paper[1], we demonstrated that porcine follicles collected during the early stage of development are the most sensitive to the toxic action of polychlorinated biphenyl 153 (PCB 153). Follicles of this type were collected to test the effect of PCB 153 on cell steroidogenesis and viability. Cocultures of granulosa and theca cells were grown in M199 medium at 37ºC. Control cultures were maintained in that medium alone, while experimental ones were supplemented with PCB 153 at doses of 5, 10, 50, and 100 ng/ml. After 48, 96, and 144 h, media were collected for steroid analysis and cell viability was measured using an LDH (lactate dehydrogenase activity) cytotoxicity test. A 2-day exposure of follicular cells to all the investigated doses of PCB 153 caused a statistically significant decrease in progesterone (P4) secretion, while in doses of 50 and 100 ng/ml there was also a decrease in testosterone (T) secretion. No effect on estradiol (E2) secretion was observed. The observed decrease in P4 and T secretion, and lack of any statistically significant effect on E2 secretion by cells from small follicles exposed for 48 h to PCB, suggests that PCB 153 acts before P4 formation. Longer exposures caused an increase in P4 secretion, with a concomitant drastic decrease in T secretion and a tendency to decrease the E2 secretion, suggesting inhibition of P450 17α hydroxysteroid dehydrogenase, an enzyme that converts P4 to T. The observed PCB 153–induced increase in P4 secretion by cells collected from small antral follicles, with a concomitant decrease in E2 secretion, accounts for the induction of luteinization and, in this case, inhibition of aromatization process in the follicles. However, in all doses tested and at all times of exposure, PCB 153 had no effect on cell viability. These findings suggest different time of exposure–dependent action of PCB 153 on particular steps of steroidogenesis but not action on cell viability. These results should be considered preliminary, pending confirmation by other studies.


More related articles

59 Views | 405 Downloads | 10 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.