Table of Contents Author Guidelines Submit a Manuscript
Volume 3, Pages 913-921
Review Article

Evaluation of the Most Current and Effective Methods in the Analysis of Chlorinated Dioxins in Ground Beef

Department of Chemistry, 3100 Cleburne Street, Texas Southern University, Houston, TX, USA

Academic Editor: Joav Merrick

Copyright © 2003 Ebere C. Anyanwu et al.


Chlorinated dioxins are the group of environmental pollutants consisting of 210 chlorinated dibenzo-p-dioxins and dibenzofurans. They are highly toxic and persistent. They are lipophilic and can easily biomagnify in the food chain, hence posing a serious threat to human health. The daily consumption of low-level contaminated food, mainly of animal origin, leads to the accumulation of dioxins in the human body. The exposures of the general human population to dioxins and the specific issues of a risk assessment of dioxin pose serious concerns in public environmental and nutritional health. This paper reviews the analysis of chlorinated dioxins in ground beef. The sources of contamination of chlorinated dioxins in ground beef are first reviewed to form a basis for a clear understanding of the health implications of chlorinated dioxins in the human food chain and why it is necessary to monitor the level of dioxins in animal food products, especially ground beef. The methods of collection, sampling, and processing of ground beef, and the methods of sample clean up prior to the analysis, are reviewed. Emphasis is laid on the new techniques that are available and that might be effective in the analysis of chlorinated dioxins in ground beef. Among these new methods and techniques are: the synergistic combination of ELISA/GC/MS, direct sample introduction to /GC/MS-MS, automated clean-up method, and the supercritical fluid extraction methods. The possible treatments of results from each method and technique are discussed and their respective efficiencies are compared. Finally, quality control and quality assurance parameters are evaluated for levels of accuracy, reproducibility, and precision.