Abstract

Intestinal microbiota is a positive health asset that exerts a conditioning effect on intestinal homeostasis. Resident bacteria deliver regulatory signals to the epithelium and instruct mucosal immune responses. Recent research has revealed a potential therapeutic role for the manipulation of the microbiota and exploitation of host-microbial signalling pathways in the maintenance of human health and treatment of various mucosal disorders. A variety of pharmabiotic strategies, such as the use of specific members of the microbiota, their surface components, or metabolites, as well as genetically modified commensal bacteria, are being investigated for their ability to enhance the beneficial components of the microbiota. It is clear that engagement with host cells is central to pharmabiotic action, and several strain-specific mechanisms of action have been elucidated. However, the molecular details underpinning these mechanisms remain almost entirely unknown. Understanding how pharmabiotics exert their beneficial effects is critical for the establishment of definitive selection criteria for certain pharmabiotic strategies for specific clinical conditions. Scientifically accredited evidence of efficacy and studies to elucidate the molecular mechanisms of host-microbiota interactions are needed to lend credence to the use of pharmabiotic strategies in clinical medicine.