The Scientific World Journal

The Scientific World Journal / 2008 / Article
Special Issue

Cardiac Development

View this Special Issue

Review Article | Open Access

Volume 8 |Article ID 939501 |

Beerend P. Hierck, Kim Van der Heiden, Christian Poelma, Jerry Westerweel, Robert E. Poelmann, "Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane!", The Scientific World Journal, vol. 8, Article ID 939501, 11 pages, 2008.

Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane!

Academic Editor: Robert E. Poelmann
Received19 Nov 2007
Revised11 Jan 2008
Accepted30 Jan 2008


Cardiovascular development is directed or modulated by genetic and epigenetic factors. The latter include blood flow-related shear stress and blood pressure-related circumferential strain. This review focuses on shear stress and its effects on endothelial cells lining the inner surfaces of the heart and blood vessels. Flow characteristics of the embryonic blood, like velocity, viscosity and periodicity, are taken into account to describe the responses of endothelial cells to shear stress and the sensors for this friction force. The primary cilium, which is an integral part of the shear sensor, connects to the cytoskeletal microtubules and transmits information about the level and direction of blood flow into the endothelial cell. When the heart remodels from a more or less straight into a c-shaped tube the sharp curvature, in combination with the small vessel dimensions and high relative viscosity, directs the highest shear stress to the inner curvature of this pump. This proves to be an important epigenetic modulator of cardiac morphogenesis because when shear stress is experimentally altered inner curvature remodeling is affected which leads to the development of congenital cardiovascular anomalies. The best of both worlds, mechanics and biology, are used here to describe early cardiogenesis.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.