Table of Contents Author Guidelines Submit a Manuscript
TheScientificWorldJOURNAL
Volume 11, Pages 2091-2105
http://dx.doi.org/10.1100/2011/402326
Research Article

Biochemical and Ultrastructural Changes in the Hepatopancreas of Bellamya aeruginosa (Gastropoda) Fed with Toxic Cyanobacteria

Key Laboratory of Applied Marine Biotechnology, Ministry of Education, College of Life Science and Biotechnology, Ningbo University, Ningbo 315211, China

Received 11 March 2011; Accepted 8 September 2011

Academic Editor: Lars Sonesten

Copyright © 2011 Jinyong Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Havens, R. T. James, T. L. East, and V. H. Smith, “N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution,” Environmental Pollution, vol. 122, no. 3, pp. 379–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. W. W. Carmichael, “The cyanotoxins,” in Advances in Botanical Research, J. A. Callow, Ed., pp. 211–256, Academic Press, London, UK, 1997. View at Google Scholar
  3. I. Stewart, A. A. Seawright, and G. R. Shaw, “Cyanobacterial poisoning in livestock, wild mammals and birds–an overview,” in Advances in Experimental Medicine and Biology, H. K. Hudnell, Ed., pp. 613–618, Springer Press, New York, NY, USA, 2008. View at Google Scholar
  4. J. Chen, P. Xie, L. Li, and J. Xu, “First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage,” Toxicological Sciences, vol. 108, no. 1, pp. 81–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. W. Zurawell, B. G. Kotak, and E. E. Prepas, “Influence of lake trophic status on the occurrence of microcystin-LR in the tissue of pulmonate snails,” Freshwater Biology, vol. 42, no. 4, pp. 707–718, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ozawa, A. Yokoyama, K. Ishikawa, M. Kumagai, M. F. Watanabe, and H. D. Park, “Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail,” Limnology, vol. 4, no. 3, pp. 131–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Chen, P. Xie, L. Guo, L. Zheng, and L. Ni, “Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China,” Environmental Pollution, vol. 134, no. 3, pp. 423–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Lance, L. Brient, M. Bormans, and C. Gérard, “Interactions between cyanobacteria and Gastropods. I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification,” Aquatic Toxicology, vol. 79, no. 2, pp. 140–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Lance, E. Bugajny, M. Bormans, and C. Gérard, “Consumption of toxic cyanobacteria by Potamopyrgus antipodarum (Gastropoda, Prosobranchia) and consequences on life traits and microcystin accumulation,” Harmful Algae, vol. 7, no. 4, pp. 464–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Lance, M. R. Neffling, C. Gérard, J. Meriluoto, and M. Bormans, “Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure,” Environmental Pollution, vol. 158, no. 3, pp. 674–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. V. M. Vasconcelos, C. Wiegand, and S. Pflugmacher, “Dynamics of glutathione-S-transferases in Mytilus galloprovincialis exposed to toxic Microcystis aeruginosa cells, extracts and pure toxins,” Toxicon, vol. 50, no. 6, pp. 740–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Fernandes, M. Welker, and V. M. Vasconcelos, “Changes in the GST activity of the mussel Mytilus galloprovincialis during exposure and depuration of microcystins,” Journal of Experimental Zoology Part A, vol. 311, no. 3, pp. 226–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Gérard, L. Brient, and B. Le Rouzic, “Variation in the response of juvenile and adult gastropods (Lymnaea stagnalis) to cyanobacterial toxin (microcystin-LR),” Environmental Toxicology, vol. 20, no. 6, pp. 592–596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Lance, C. Paty, M. Bormans, L. Brient, and C. Gérard, “Interactions between cyanobacteria and gastropods. II. Impact of toxic Planktothrix agardhii on the life-history traits of Lymnaea stagnalis,” Aquatic Toxicology, vol. 81, no. 4, pp. 389–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Gérard, V. Poullain, E. Lance, A. Acou, L. Brient, and A. Carpentier, “Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs,” Environmental Pollution, vol. 157, no. 2, pp. 609–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Y. Chen, Y. L. Liang, K. P. Sung, and S. T. Wang, “On ecological distributions and population densities of mollusca in lake tunghu, Wuchang,” Acta Hydrobiologica Sinica, vol. 5, pp. 371–379, 1975. View at Google Scholar
  17. S. Han, S. Yan, K. Chen et al., “15N isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent,” Journal of Environmental Sciences, vol. 22, no. 2, pp. 242–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Pflugmacher, C. Wiegand, A. L. Oberemm et al., “Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication,” Biochimica et Biophysica Acta, vol. 1425, pp. 527–533, 1998. View at Google Scholar
  19. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Google Scholar · View at Scopus
  20. X. Li, Y. Liu, L. Song, and J. Liu, “Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR,” Toxicon, vol. 42, no. 1, pp. 85–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Qiu, P. Xie, Z. Ke, L. Li, and L. Guo, “In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake,” Toxicon, vol. 50, no. 3, pp. 365–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Li, P. Xie, S. Li, T. Qiu, and L. Guo, “Sequential ultrastructural and biochemical changes induced in vivo by the hepatotoxic microcystins in liver of the phytoplanktivorous silver carp Hypophthalmichthys molitrix,” Comparative Biochemistry and Physiology C, vol. 146, no. 3, pp. 357–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Li, P. Xie, and L. Guo, “Antioxidant response in liver of the phytoplanktivorous bighead carp (Aristichthys nobilis) intraperitoneally-injected with extracted microcystins,” Fish Physiology and Biochemistry, vol. 36, no. 2, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Molina, I. Moreno, S. Pichardo et al., “Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions,” Toxicon, vol. 46, no. 7, pp. 725–735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Atencio, I. Moreno, A. I. Prieto, R. Moyano, A. M. Molina, and A. M. Cameań, “Acute effects of microcystins MC-LR and MC-RR on acid and alkaline phosphatase activities and pathological changes in intraperitoneally exposed Tilapia fish (Oreochromis sp.),” Toxicologic Pathology, vol. 36, pp. 449–458, 2008. View at Google Scholar
  26. C. X. Zhou, B. Ma, F. X. Wang, B. Xu, and X. J. Yan, “The population growth and variation of nitrate-N and phosphate-P in the mix-culture of Phaeodactylum tricornutum Bohl. and Prorocentrum micans,” Marine Sciences, vol. 30, pp. 58–61, 2006. View at Google Scholar
  27. P. J. Van Den Brink and C. J. F. Ter Braak, “Principal response curves: analysis of time-dependent multivariate responses of biological community to stress,” Environmental Toxicology and Chemistry, vol. 18, no. 2, pp. 138–148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. T. Maynes, H. A. Luu, M. M. Cherney et al., “Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins,” Journal of Molecular Biology, vol. 356, no. 1, pp. 111–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Metcalf, K. A. Beattie, S. Pflugmacher, and G. A. Codd, “Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin-LR,” FEMS Microbiology Letters, vol. 189, no. 2, pp. 155–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Davies and S. J. Hawkins, “Mucus from marine molluscs,” Advances in Marine Biology, no. 34, pp. 1–71, 1998. View at Google Scholar · View at Scopus
  31. G. Juhel, J. Davenport, J. O'Halloran et al., “Pseudodiarrhoea in zebra mussels Dreissena polymorpha (Pallas) exposed to microcystins,” Journal of Experimental Biology, vol. 209, no. 5, pp. 810–816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Wiegand, S. Pflugmacher, A. Oberemm et al., “Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio),” Environmental Toxicology, vol. 14, no. 1, pp. 89–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Beeby and L. Richmond, “Calcium metabolism in two populations of the snail Helix aspersa on a high lead diet,” Archives of Environmental Contamination and Toxicology, vol. 17, pp. 507–511, 1988. View at Google Scholar
  34. G. P. Domouhtsidou and V. K. Dimitriadis, “Lysosomal and lipid alterations in the digestive gland of mussels, Mytilus galloprovincialis (L.) as biomarkers of environmental stress,” Environmental Pollution, vol. 115, no. 1, pp. 123–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Marigómez and L. Baybay-Villacorta, “Pollutant-specific and general lysosomal responses in digestive cells of mussels exposed to model organic chemicals,” Aquatic Toxicology, vol. 64, no. 3, pp. 235–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Robledo, I. Marigómez, E. Angulo, and M. P. Cajaraville, “Glycosylation and sorting pathways of lysosomal enzymes in mussel digestive cells,” Cell and Tissue Research, vol. 324, no. 2, pp. 319–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. S. Bhavan and P. Geraldine, “Profiles of acid and alkaline phosphatases in the prawn Macrobrachium malcolmsonii exposed to endosulfan,” Journal of Environmental Biology, vol. 25, no. 2, pp. 213–219, 2004. View at Google Scholar · View at Scopus
  38. S. Pichardo, A. Jos, J. L. Zurita, M. Salguero, A. M. Camean, and G. Repetto, “The use of the fish cell lines RTG-2 and PLHC-1 to compare the toxic effects produced by microcystins LR and RR,” Toxicology in Vitro, vol. 19, no. 7, pp. 865–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. W. X. Ding and C. N. Ong, “Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity,” FEMS Microbiology Letters, vol. 220, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Braunbeck, D. E. Hinto, and B. Streit, “Cytological alterations in fish hepatocytes following in vivo and in vitro sublethal exposure to xenobiotics-structural biomarkers of environmental contamination,” in Fish Ecotoxicology, pp. 61–141, Birkhäuser, Berlin, Germany, 1998. View at Google Scholar
  41. I. V. Klyubin, K. M. Kirpichnikova, A. M. Ischenko, A. V. Zhakhov, and I. A. Gamaley, “The role of reactive oxygen species in membrane potential changes in macrophages and astrocytes,” Membrane and Cell Biology, vol. 13, no. 4, pp. 557–566, 2000. View at Google Scholar · View at Scopus
  42. W. X. Ding, H. M. Shen, H. G. Zhu, B. L. Lee, and C. N. Ong, “Genotoxicity of microcystic cyanobacteria extract of a water source in China,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, vol. 442, no. 2, pp. 69–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Žegura, B. Sedmak, and M. Filipič, “Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2,” Toxicon, vol. 41, no. 1, pp. 41–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Triebskorn, “Ultrastructural changes in the digestive tract of Deroceras reticulatum (Müller) induced by a carbamate mollusicide and by metaldehyde,” Malacologia, vol. 31, pp. 141–156, 1989. View at Google Scholar