Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 105698, 8 pages
http://dx.doi.org/10.1100/2012/105698
Research Article

Comparative Analysis of Apoptotic Resistance of Mesenchymal Stem Cells Isolated from Human Bone Marrow and Adipose Tissue

1Department of Cardiology, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Bulvarı Vatan Caddesi, Fatih, 34093 Istanbul, Turkey
2Department of Cardiology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
3Stem Cell and Gene Therapy Research and Applied Center, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey

Received 13 October 2011; Accepted 5 January 2012

Academic Editors: F. A. Atik and G. Ristagno

Copyright © 2012 Gökhan Ertaş et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Rosamond, K. Flegal, G. Friday et al., “Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 115, no. 5, pp. e69–e171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Kocher, M. D. Schuster, M. J. Szabolcs et al., “Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function,” Nature Medicine, vol. 7, no. 4, pp. 430–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sacchetti, R. H. Harris, A. Sharon, I. Shpirer, and G. Cotter, “Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia,” Journal of the American College of Cardiology, vol. 37, no. 6, pp. 1726–1732, 2001. View at Publisher · View at Google Scholar
  4. Y. Sakaguchi, I. Sekiya, K. Yagishita, and T. Muneta, “Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source,” Arthritis and Rheumatism, vol. 52, no. 8, pp. 2521–2529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Huang, Z. M. Yang, X. H. Chen et al., “Isolation of Mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation,” Stem Cell Reviews and Reports, vol. 5, no. 3, pp. 247–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Peng, Z. Jia, X. Yin et al., “Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue,” Stem Cells and Development, vol. 17, no. 4, pp. 761–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W. R. Duan, D. S. Gamer, S. D. Williams, C. L. Funckes-Shippy, I. S. Spath, and E. A. G. Blomme, “Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts,” Journal of Pathology, vol. 199, no. 2, pp. 221–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Lipinski, G. G. L. Biondi-Zoccai, A. Abbate et al., “Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction. A collaborative systematic review and meta-Analysis of controlled clinical trials,” Journal of the American College of Cardiology, vol. 50, no. 18, pp. 1761–1767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. L. Chen, W. W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Meluzín, J. Mayer, L. Groch et al., “Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function,” American Heart Journal, vol. 152, no. 5, pp. e9–e915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Meluzín, S. Janoušek, J. Mayer et al., “Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction,” International Journal of Cardiology, vol. 128, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar
  14. K. L. Ang, D. Chin, F. Leyva et al., “Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 10, pp. 663–670, 2008. View at Publisher · View at Google Scholar
  15. Z. Q. Li, M. Zhang, Y. Z. Jing et al., “The clinical study of autologous peripheral blood stem cell transplantation by intracoronory infusion in patients with acute myocardial infarction (AMI),” International Journal of Cardiology, vol. 115, no. 1, pp. 52–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Erbs, A. Linke, V. Adams et al., “Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study,” Circulation Research, vol. 97, no. 8, pp. 756–762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Stamm, H. D. Kleine, Y. H. Choi et al., “Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 3, pp. 717–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. E. A. Van Der Bogt, S. Schrepfer, J. Yu et al., “Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart,” Transplantation, vol. 87, no. 5, pp. 642–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Li, Q. Zeng, H. Wang et al., “Adipose tissue stromal cells transplantation in rats of acute myocardial infarction,” Coronary Artery Disease, vol. 18, no. 3, pp. 221–227, 2007. View at Publisher · View at Google Scholar · View at Scopus