Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 149893, 5 pages
http://dx.doi.org/10.1100/2012/149893
Research Article

Defluorination of Sodium Fluoroacetate by Bacteria from Soil and Plants in Brazil

1Unidade Acadêmica de Medicina Veterinária, Universidade Federal de Campina Grande, Avenida Universitária, s/n, Bairro Sta. Cecília, Patos, PB, CEP: 58700-970, Brazil
2Laboratório de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP: 81531-980, Brazil
3Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, CEP: 50670-901, Brazil
4CSIRO Livestock Industries, Queensland Bioscience Precinct, Carmody Road, 306, St Lucia, 4067, QLD, Australia

Received 1 November 2011; Accepted 11 December 2011

Academic Editor: Fumihiko Takeuchi

Copyright © 2012 Expedito K. A. Camboim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Tokarnia, P. V. Paixoto, and J. Dobereiner, “Toxic plants affecting heart function of cattle in Brazil,” Pesquisa Veterinária Brasileira, vol. 10, pp. 1–10, 1990. View at Google Scholar
  2. S.V. Schons, T. L. Mello, F. Riet-Correa, and A. L. Schild, “Poisoning by amorimia (Mascagnia) sepium in sheep in Northern Brazil,” Toxicon, vol. 57, pp. 781–786, 2011. View at Google Scholar
  3. M. M. Oliveira, “Chromatographic isolation of monofluoroacetic acid from Palicourea marcgravii St. Hil,” Experientia, vol. 19, no. 11, pp. 586–587, 1963. View at Publisher · View at Google Scholar · View at Scopus
  4. H. C. Krebs, W. Kemmerling, and G. Habermehl, “Qualitative and quantitative determination of fluoroacetic acid in Arrabidea bilabiata and Palicourea marcgravii by 19F-NMR spectroscopy,” Toxicon, vol. 32, no. 8, pp. 909–913, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. P. A. Mayes, “O ciclo do ácido cítrico: o catabolismo da acetil-coA,” in Harper: Bioquímica, K. R. Murray et al., Ed., pp. 182–189, Atheneu, São Paulo, Brazil, 9th edition, 2002. View at Google Scholar
  6. L. E. Twigg and D. R. King, “The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review,” Oikos, vol. 61, no. 3, pp. 412–430, 1991. View at Google Scholar · View at Scopus
  7. S. Fetzner and F. Lingens, “Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications,” Microbiological Reviews, vol. 58, no. 4, pp. 641–685, 1994. View at Google Scholar · View at Scopus
  8. L. E. Twigg and L. V. Socha, “Defluorination of sodium monofluoroacetate by soil microorganisms from central Australia,” Soil Biology and Biochemistry, vol. 33, no. 2, pp. 227–234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Gregg, C. L. Cooper, D. J. Schafer et al., “Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium,” Nature, vol. 12, no. 13, pp. 1361–1365, 1994. View at Google Scholar · View at Scopus
  10. K. Gregg, B. Hamdorf, K. Henderson, J. Kopecny, and C. Wong, “Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3496–3498, 1998. View at Google Scholar · View at Scopus
  11. W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991. View at Google Scholar · View at Scopus
  12. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985. View at Google Scholar
  13. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar
  14. T. Kurihara, T. Yamauchi, S. Ichiyama, H. Takahata, and N. Esaki, “Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1,” Journal of Molecular Catalysis B, vol. 23, pp. 347–355, 2003. View at Google Scholar
  15. S. Lucas, A. Copeland, A. Lapidus et al., “Paenibacillus sp. Y412MC10, complete genome,” 2011, http://www.ncbi.nlm.nih.gov/.
  16. S. Lucas, A. Copeland, A. Lapidus et al., “Stenotrophomonas maltophilia R551-3, complete genome,” 2011, http://www.ncbi.nlm.nih.gov/.
  17. M. Kuroda, A. Yamashita, H. Hirakawa et al., “Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 37, pp. 13272–13277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Amadou, G. Pascal, S. Mangenot et al., “Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia,” Genome Research, vol. 18, pp. 1472–1483, 2008. View at Google Scholar
  19. D. Ward, A. Earl, M. Feldgarden et al., “The genome sequence of Ralstonia sp. strain 5_7_47FAA,” 2011, http://www.ncbi.nlm.nih.gov/.
  20. J. E. Firsova, N. V. Doronina, E. Lang, C. Spröer, S. Vuilleumier, and Y. A. Trotsenko, “Ancylobacter dichloromethanicus sp. nov.—a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane,” Systematic and Applied Microbiology, vol. 32, no. 4, pp. 227–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. S. Melo and J. L. Azevedo, “Como isolar microrganismos degradadores de moléculas xenobióticas,” in Microbiologia Ambiental, I. S. Melo and J. L. Azevedo, Eds., pp. 167–183, EMBRAPA-CNPMA, Jaguariuna, Brazil, 1997. View at Google Scholar
  22. J. Q. Liu, T. Kurihara, S. Ichiyama et al., “Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B,” Journal of Biological Chemistry, vol. 273, no. 47, pp. 30897–30902, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Donnelly and C.D. Murphy, “Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341,” Biotechnology Letters, vol. 31, pp. 245–250, 2009. View at Google Scholar
  24. W. Y. Chan, M. Wong, J. Guthrie et al., “Sequence- and activity-based screening of microbial genomes for novel dehalogenases,” Microbial Biotechnology, vol. 3, no. 1, pp. 107–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kawasaki, K. Tsuda, I. Matsushita, and K. Tonomura, “Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B,” Journal of General Microbiology, vol. 138, no. 7, pp. 1317–1323, 1992. View at Google Scholar · View at Scopus
  26. C. K. Davis, S. E. Denman, L. I. Sly, and C. S. Mcsweeney, “Development of a colorimetric colony-screening assay for detection of defluorination by micro-organisms,” Letters in Applied Microbiology, vol. 53, no. 4, pp. 417–423, 2011. View at Publisher · View at Google Scholar