Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 157534, 9 pages
http://dx.doi.org/10.1100/2012/157534
Review Article

T Lymphocyte Autoreactivity in Inflammatory Mechanisms Regulating Atherosclerosis

1Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
2Dipartimento di Fisiologia e Farmacologia “Vittorio Erspamer”, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Rome, Italy
3Dipartimento di Scienze Chirurgiche, Policlinico Umberto I, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Rome, Italy

Received 5 October 2012; Accepted 22 November 2012

Academic Editors: N. Miyahara and D. P. Ramji

Copyright © 2012 Elisabetta Profumo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Bartoloni, Y. Shoenfeld, and R. Gerli, “Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin,” Arthritis Care and Research, vol. 63, no. 2, pp. 178–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Libby, Y. Okamoto, V. Z. Rocha, and E. Folco, “Inflammation in atherosclerosis: transition from theory to practice,” Circulation Journal, vol. 74, no. 2, pp. 213–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. I. van Leuven, R. Franssen, J. J. Kastelein, M. Levi, E. S. G. Stroes, and P. P. Tak, “Systemic inflammation as a risk factor for atherothrombosis,” Rheumatology, vol. 47, no. 1, pp. 3–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. R. S. Girn, N. M. Orsi, and S. Homer-Vanniasinkam, “An overview of cytokine interactions in atherosclerosis and implications for peripheral arterial disease,” Vascular Medicine, vol. 12, no. 4, pp. 299–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Nilsson, M. Wigren, and P. K. Shah, “Regulatory T cells and the control of modified lipoprotein autoimmunity-driven atherosclerosis,” Trends in Cardiovascular Medicine, vol. 19, no. 8, pp. 272–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. A. Liehn, A. Zernecke, O. Postea, and C. Weber, “Chemokines: inflammatory mediators of atherosclerosis,” Archives of Physiology and Biochemistry, vol. 112, no. 4-5, pp. 229–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Bernhagen, R. Krohn, H. Lue et al., “MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment,” Nature Medicine, vol. 13, no. 5, pp. 587–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kleemann, S. Zadelaar, and T. Kooistra, “Cytokines and atherosclerosis: a comprehensive review of studies in mice,” Cardiovascular Research, vol. 79, no. 3, pp. 360–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. J. S. De Villiers, J. D. Smith, M. Miyata, H. M. Dansky, E. Darley, and S. Gordon, “Macrophage phenotype in mice deficient in both macrophage-colony- stimulating factor (Op) and apolipoprotein E,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 4, pp. 631–640, 1998. View at Google Scholar · View at Scopus
  11. T. Rajavashisth, J. H. Qiao, S. Tripathi et al., “Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice,” Journal of Clinical Investigation, vol. 101, no. 12, pp. 2702–2710, 1998. View at Google Scholar · View at Scopus
  12. H. Ueno, E. Klechevsky, R. Morita et al., “Dendritic cell subsets in health and disease,” Immunological Reviews, vol. 219, no. 1, pp. 118–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Mallat, H. Ait-Oufella, and A. Tedgui, “Regulatory T-cell immunity in atherosclerosis,” Trends in Cardiovascular Medicine, vol. 17, no. 4, pp. 113–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Østerud and E. Bjørklid, “Role of monocytes in atherogenesis,” Physiological Reviews, vol. 83, no. 4, pp. 1069–1112, 2003. View at Google Scholar · View at Scopus
  15. A. Yilmaz, M. Lochno, F. Traeg et al., “Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques,” Atherosclerosis, vol. 176, no. 1, pp. 101–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ranjit and L. Dazhu, “Potential role of dendritic cells for progression of atherosclerotic lesions,” Postgraduate Medical Journal, vol. 82, no. 971, pp. 573–575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. K. Hansson, “Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Szodoray, O. Timar, K. Veres et al., “Th1/Th2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines—immunological alterations in acute coronary syndrome and stable coronary artery disease,” Scandinavian Journal of Immunology, vol. 64, no. 3, pp. 336–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Tuomisto, P. Jousilahti, J. Sundvall, P. Pajunen, and V. Salomaa, “C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality: a population-based, prospective study,” Thrombosis and Haemostasis, vol. 95, no. 3, pp. 511–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Heeschen, S. Dimmeler, C. W. Hamm et al., “Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes,” Circulation, vol. 107, no. 16, pp. 2109–2114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Yamagami, K. Kitagawa, T. Hoshi et al., “Associations of serum IL-18 levels with carotid intima-media thickness,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 7, pp. 1458–1462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. V. Elkind, T. Rundek, R. R. Sciacca et al., “Interleukin-2 levels are associated with carotid artery intima-media thickness,” Atherosclerosis, vol. 180, no. 1, pp. 181–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. De Lemos, D. A. Morrow, M. S. Sabatine et al., “Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes,” Circulation, vol. 107, no. 5, pp. 690–695, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Profumo, C. Esposito, B. Buttari et al., “Intracellular expression of cytokines in peripheral blood from patients with atherosclerosis before and after carotid endarterectomy,” Atherosclerosis, vol. 191, no. 2, pp. 340–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Profumo, B. Buttari, M. E. Tosti et al., “Association of intracellular pro- and anti-inflammatory cytokines in peripheral blood with the clinical or ultrasound indications for carotid endarterectomy in patients with carotid atherosclerosis,” Clinical and Experimental Immunology, vol. 152, no. 1, pp. 120–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. M. Dansky, S. A. Charlton, M. M. Harper, and J. D. Smith, “T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4642–4646, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Daugherty, E. Puré, D. Delfel-Butteiger et al., “The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/- mice,” Journal of Clinical Investigation, vol. 100, no. 6, pp. 1575–1580, 1997. View at Google Scholar · View at Scopus
  28. C. A. Reardon, L. Blachowicz, T. White et al., “Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 6, pp. 1011–1016, 2001. View at Google Scholar · View at Scopus
  29. L. Song, C. Leung, and C. Schindler, “Lymphocytes are important in early atherosclerosis,” Journal of Clinical Investigation, vol. 108, no. 2, pp. 251–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Zhou, A. Nicoletti, R. Elhage, and G. K. Hansson, “Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice,” Circulation, vol. 102, no. 24, pp. 2919–2922, 2000. View at Google Scholar · View at Scopus
  31. A. Tedgui and Z. Mallat, “Cytokines in atherosclerosis: pathogenic and regulatory pathways,” Physiological Reviews, vol. 86, no. 2, pp. 515–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Ait-Oufella, S. Taleb, Z. Mallat, and A. Tedgui, “Recent advances on the role of cytokines in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 5, pp. 969–979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. George, S. Schwartzenberg, D. Medvedovsky et al., “Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques,” Atherosclerosis, vol. 222, no. 2, pp. 519–523, 2012. View at Google Scholar
  34. S. Gupta, A. M. Pablo, X. C. Jiang, N. Wang, A. R. Tall, and C. Schindler, “IFN-γ, potentiates atherosclerosis in ApoE knock-out mice,” Journal of Clinical Investigation, vol. 99, no. 11, pp. 2752–2761, 1997. View at Google Scholar · View at Scopus
  35. S. C. Whitman, P. Ravisankar, H. Elam, and A. Daugherty, “Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E-/- mice,” American Journal of Pathology, vol. 157, no. 6, pp. 1819–1824, 2000. View at Google Scholar · View at Scopus
  36. M. Koga, H. Kai, H. Yasukawa et al., “Inhibition of progression and stabilization of plaques by postnatal interferon-γ function blocking in ApoE-knockout mice,” Circulation Research, vol. 101, no. 4, pp. 348–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Profumo, B. Buttari, M. E. Tosti et al., “Identification of IP-10 and IL-5 as proteins differentially expressed in human complicated and uncomplicated carotid atherosclerotic plaques,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 3, pp. 775–782, 2010. View at Google Scholar · View at Scopus
  38. K. P. Lam, Y. T. Chu, C. H. Kuo et al., “Suppressive effects of procaterol on expression of IP-10/CXCL 10 and RANTES/CCL 5 by bronchial epithelial cells,” Inflammation, vol. 34, no. 4, pp. 238–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Takatsu, T. Kouro, and Y. Nagai, “Interleukin 5 in the link between the innate and acquired immune response,” Advances in Immunology, vol. 101, no. C, pp. 191–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Davenport and P. G. Tipping, “The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice,” American Journal of Pathology, vol. 163, no. 3, pp. 1117–1125, 2003. View at Google Scholar · View at Scopus
  41. S. A. Huber, P. Sakkinen, C. David, M. K. Newell, and R. P. Tracy, “T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia,” Circulation, vol. 103, no. 21, pp. 2610–2616, 2001. View at Google Scholar · View at Scopus
  42. V. L. King, S. J. Szilvassy, and A. Daugherty, “Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 3, pp. 456–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Miossec, “IL-17 and Th17 cells in human inflammatory diseases,” Microbes and Infection, vol. 11, no. 5, pp. 625–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. W. O'Connor Jr., M. Kamanaka, C. J. Booth et al., “A protective function for interleukin 17A in T cell-mediated intestinal inflammation,” Nature Immunology, vol. 10, no. 6, pp. 603–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Zhou, D. R. Dowell, M. M. Huckabee et al., “Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis,” PLoS One, vol. 7, no. 5, article e33518, 2012. View at Google Scholar
  46. S. Taleb, A. Tedgui, and Z. Mallat, “Interleukin-17: friend or foe in atherosclerosis?” Current Opinion in Lipidology, vol. 21, no. 5, pp. 404–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. van Es, G. H. M. van Puijvelde, O. H. Ramos et al., “Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice,” Biochemical and Biophysical Research Communications, vol. 388, no. 2, pp. 261–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Erbel, L. Chen, F. Bea et al., “Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice,” Journal of Immunology, vol. 183, no. 12, pp. 8167–8175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Smith, K. M. R. Prasad, M. Butcher et al., “Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice,” Circulation, vol. 121, no. 15, pp. 1746–1755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. Q. Gao, Y. Jiang, T. Ma et al., “A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice,” Journal of Immunology, vol. 185, no. 10, pp. 5820–5827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Chen, K. Shimada, W. Zhang, G. Huang, T. R. Crother, and M. Arditi, “IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice,” Journal of Immunology, vol. 185, no. 9, pp. 5619–5627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. E. Eid, D. A. Rao, J. Zhou et al., “Interleukin-17 and interferon-γ Are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells,” Circulation, vol. 119, no. 10, pp. 1424–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Liu, F. Lu, H. Pan et al., “Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication,” Atherosclerosis, vol. 221, no. 1, pp. 232–241, 2012. View at Google Scholar
  54. S. Taleb, M. Romain, B. Ramkhelawon et al., “Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis,” Journal of Experimental Medicine, vol. 206, no. 10, pp. 2067–2077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Liuzzo, J. J. Goronzy, H. Yang et al., “Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes,” Circulation, vol. 101, no. 25, pp. 2883–2888, 2000. View at Google Scholar · View at Scopus
  56. T. Nakajima, S. Schulte, K. J. Warrington et al., “T-cell-mediated lysis of endothelial cells in acute coronary syndromes,” Circulation, vol. 105, no. 5, pp. 570–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. K. J. Warrington, P. D. Kent, R. L. Frye et al., “Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery disease: a case control study,” Arthritis Research & Therapy, vol. 7, no. 5, pp. R984–R991, 2005. View at Google Scholar · View at Scopus
  58. D. F. Ketelhuth and G. K. Hansson, “Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall,” Thrombosis & Haemostasis, vol. 106, no. 5, pp. 779–786, 2011. View at Google Scholar
  59. A. Jäger and V. K. Kuchroo, “Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation,” Scandinavian Journal of Immunology, vol. 72, no. 3, pp. 173–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. George, “Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 9, pp. 531–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Ait-Oufella, B. L. Salomon, S. Potteaux et al., “Natural regulatory T cells control the development of atherosclerosis in mice,” Nature Medicine, vol. 12, no. 2, pp. 178–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Mor, D. Planer, G. Luboshits et al., “Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 893–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Mor, G. Luboshits, D. Planer, G. Keren, and J. George, “Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes,” European Heart Journal, vol. 27, no. 21, pp. 2530–2537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. F. Han, P. Liu, W. Zhang et al., “The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes,” Clinical Immunology, vol. 124, no. 1, pp. 90–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Cheng, X. Yu, Y. J. Ding et al., “The Th17/Treg imbalance in patients with acute coronary syndrome,” Clinical Immunology, vol. 127, no. 1, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Ait-Oufella, S. Taleb, Z. Mallat, and A. Tedgui, “Cytokine network and T cell immunity in atherosclerosis,” Seminars in Immunopathology, vol. 31, no. 1, pp. 23–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Z. Mallat, S. Besnard, M. Duriez et al., “Protective role of interleukin-10 in atherosclerosis,” Circulation Research, vol. 85, no. 8, pp. e17–e24, 1999. View at Google Scholar · View at Scopus
  70. D. A. Smith, S. D. Irving, J. Sheldon, D. Cole, and J. C. Kaski, “Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina,” Circulation, vol. 104, no. 7, pp. 746–749, 2001. View at Google Scholar · View at Scopus
  71. Z. Mallat, A. Gojova, C. Marchiol-Fournigault et al., “Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice,” Circulation Research, vol. 89, no. 10, pp. 930–934, 2001. View at Google Scholar · View at Scopus
  72. G. Caligiuri, M. Rudling, V. Ollivier et al., “Interleukin- 10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice,” Molecular Medicine, vol. 9, no. 1-2, pp. 10–17, 2003. View at Google Scholar · View at Scopus
  73. Z. Mallat, A. Gojova, V. Brun et al., “Induction of a regulatory T cell type I response reduces the development of atherosclerosis in apolipoprotein E-knockout mice,” Circulation, vol. 108, no. 10, pp. 1232–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Voelkl, R. Gary, and A. Mackensen, “Characterization of the immunoregulatory function of human TCR-αβ+ CD4− CD8− double-negative T cells,” European Journal of Immunology, vol. 41, no. 3, pp. 739–748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Elhage, P. Gourdy, L. Brauchet et al., “Deleting TCRαβ+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice,” American Journal of Pathology, vol. 165, no. 6, pp. 2013–2018, 2004. View at Google Scholar · View at Scopus
  76. P. S. Olofsson, L. Å. Söderström, D. Wågsäter et al., “CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice,” Circulation, vol. 117, no. 10, pp. 1292–1301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Caligiuri, G. Paulsson, A. Nicoletti, A. Maseri, and G. K. Hansson, “Evidence for antigen-driven T-cell response in unstable angina,” Circulation, vol. 102, no. 10, pp. 1114–1119, 2000. View at Google Scholar · View at Scopus
  78. S. Stemme, B. Faber, J. Holm, O. Wiklund, J. L. Witztum, and G. K. Hansson, “T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3893–3897, 1995. View at Google Scholar · View at Scopus
  79. M. Benagiano, A. Azzurri, A. Ciervo et al., “T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6658–6663, 2003. View at Google Scholar
  80. M. Benagiano, F. Munari, A. Ciervo et al., “Chlamydophila pneumoniae phospholipase D, (CpPLD) drives Th17 inflammation in human atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. 1222–1227, 2012. View at Google Scholar
  81. M. Madjid, M. Naghavi, S. Litovsky et al., “Influenza and cardiovascular disease: a new opportunity for prevention and the need for further studies,” Circulation, vol. 108, no. 22, pp. 2730–2736, 2003. View at Google Scholar
  82. M. Dong, T. Liu, and G. Li, “Association between acute infections and risk of acute coronary syndrome: a meta-analysis,” International Journal of Cardiology, vol. 147, no. 3, pp. 479–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Tiirola, J. Sinisalo, M. S. Nieminen et al., “Chlamydial lipopolysaccharide is present in serum during acute coronary syndrome and correlates with CRP levels,” Atherosclerosis, vol. 194, no. 2, pp. 403–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. P. K. Shah, “Plaque disruption and thrombosis: potential role of inflammation and infection,” Cardiology in Review, vol. 8, no. 1, pp. 31–39, 2000. View at Google Scholar · View at Scopus
  85. M. E. Rosenfeld and L. A. Campbell, “Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis,” Thrombosis & Haemostasis, vol. 106, no. 5, pp. 858–867, 2011. View at Google Scholar
  86. P. Matusik, B. Guzik, C. Weber, and T. J. Guzik, “Do we know enough about the immune pathogenesis of acute coronary syndromes to improve clinical practice?” Thrombosis & Haemostasis, vol. 108, no. 3, pp. 443–456, 2012. View at Google Scholar
  87. J. Nilsson and G. K. Hansson, “Autoimmunity in atherosclerosis: a protective response losing control?” Journal of Internal Medicine, vol. 263, no. 5, pp. 464–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. C. J. Binder, M. K. Chang, P. X. Shaw et al., “Innate and acquired immunity in atherogenesis,” Nature Medicine, vol. 8, no. 11, pp. 1218–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Frostegard, R. Wu, R. Giscombe, G. Holm, A. K. Lefvert, and J. Nilsson, “Induction of T-cell activation by oxidized low density lipoprotein,” Arteriosclerosis and Thrombosis, vol. 12, no. 4, pp. 461–467, 1992. View at Google Scholar · View at Scopus
  90. G. Wick, M. Knoflach, and Q. Xu, “Autoimmune and inflammatory mechanisms in atherosclerosis,” Annual Review of Immunology, vol. 22, pp. 361–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. T. A. Mehta, J. Greenman, C. Ettelaie, A. Venkatasubramaniam, I. C. Chetter, and P. T. McCollum, “Heat shock proteins in vascular disease—a review,” European Journal of Vascular and Endovascular Surgery, vol. 29, no. 4, pp. 395–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. G. Pockley, “Heat shock proteins, inflammation, and cardiovascular disease,” Circulation, vol. 105, no. 8, pp. 1012–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Benagiano, M. M. D'Elios, A. Amedei et al., “Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques,” Journal of Immunology, vol. 174, no. 10, pp. 6509–6517, 2005. View at Google Scholar · View at Scopus
  94. H. K. Park, E. C. Park, S. W. Bae et al., “Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome,” Circulation, vol. 114, no. 9, pp. 886–893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. G. H. M. Van Puijvelde, T. Van Es, E. J. A. Van Wanrooij et al., “Induction of oral tolerance to HSP60 or an HSP60-peptide activates t cell regulation and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2677–2683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Delgado Roche and D. A. Hernández, “New alternatives for atherosclerosis treatment based on immunomodulation,” ISRN Vascular Medicine, vol. 2012, Article ID 785094, 2012. View at Google Scholar
  97. R. Businaro, E. Profumo, A. Tagliani et al., “Heat-shock protein 90: a novel autoantigen in human carotid atherosclerosis,” Atherosclerosis, vol. 207, no. 1, pp. 74–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Profumo, B. Buttari, and R. Riganò, “Oxidative stress in cardiovascular inflammation: its involvement in autoimmune responses,” International Journal of Inflammation, vol. 2011, Article ID 295705, 2011. View at Google Scholar
  99. Y. Doring, H. D. Manthey, M. Drechsler et al., “Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis,” Circulation, vol. 125, no. 13, pp. 1673–1683, 2012. View at Google Scholar
  100. E. A. Van Vre, H. Ait-Oufella, A. Tedgui et al., “Apoptotic cell death and efferocytosis in atherosclerosis,” Arteriosclerosis Thrombosis and Vascular Biology, vol. 32, no. 4, pp. 887–893, 2012. View at Google Scholar
  101. Y. Shoenfeld, R. Gerli, A. Doria et al., “Accelerated atherosclerosis in autoimmune rheumatic diseases,” Circulation, vol. 112, no. 21, pp. 3337–3347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Profumo, B. Buttari, C. Alessandri et al., “Beta2-glycoprotein I is a target of t cell reactivity in patients with advanced carotid atherosclerotic plaques,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 1, pp. 73–80, 2010. View at Google Scholar · View at Scopus
  103. B. Buttari, E. Profumo, V. Mattei et al., “Oxidized β2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response,” Blood, vol. 106, no. 12, pp. 3880–3887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Buttari, E. Profumo, A. Capozzi et al., “Advanced glycation end products of human β2 glycoprotein I modulate the maturation and function of DCs,” Blood, vol. 117, no. 23, pp. 6152–6161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Profumo, B. Buttari, and R. Riganò, “Oxidized haemoglobin as antigenic target of cell-mediated immune reactions in patients with carotid atherosclerosis,” Autoimmunity Reviews, vol. 8, no. 7, pp. 558–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. A. P. Levy and P. R. Moreno, “Intraplaque hemorrhage,” Current Molecular Medicine, vol. 6, no. 5, pp. 479–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. G. K. Hansson and J. Nilsson, “Vaccination against atherosclerosis? Induction of atheroprotective immunity,” Seminars in Immunopathology, vol. 31, no. 1, pp. 95–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. G. H. M. Van Puijvelde, A. D. Hauer, P. De Vos et al., “Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis,” Circulation, vol. 114, no. 18, pp. 1968–1976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Maron, G. Sukhova, A. M. Faria et al., “Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice,” Circulation, vol. 106, no. 13, pp. 1708–1715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. J. George, N. Yacov, E. Breitbart et al., “Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with β2-glycoprotein I,” Cardiovascular Research, vol. 62, no. 3, pp. 603–609, 2004. View at Publisher · View at Google Scholar · View at Scopus