Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 193213, 6 pages
http://dx.doi.org/10.1100/2012/193213
Research Article

Potentials and Limitations of Real-Time Elastography for Prostate Cancer Detection: A Whole-Mount Step Section Analysis

1Department of Radiology, Medical University of Innsbruck, Anichstraß 35, 6020 Innsbruck, Austria
2Department of Pathology, Medical University of Innsbruck, Anichstraß 35, 6020 Innsbruck, Austria
3Department of Urology, Medical University of Innsbruck, Anichstraß 35, 6020 Innsbruck, Austria
4Department of Radiology, Hospital of the Sisters of Charity, 4020 Linz, Austria
5Thomas Jefferson Prostate Diagnostic Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

Received 26 September 2012; Accepted 17 December 2012

Academic Editors: T. Esen and A. Tefekli

Copyright © 2012 Daniel Junker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Gómez Veiga, J. Ponce Reixa, A. Barbagelata López, and M. González Martín, “Current role of PSA and other markers in the diagnosis of prostate cancer,” Archivos Espanoles de Urologia, vol. 59, no. 10, pp. 1069–1082, 2006. View at Google Scholar
  2. M. Norberg, L. Egevad, L. Holmberg, P. Sparén, B. J. Norlén, and C. Busch, “The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer,” Urology, vol. 50, no. 4, pp. 562–566, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hegele, L. Skrobek, R. Hofmann, and P. Olbert, “Multiparametric MRI, elastography, contrastenhanced TRUS. Are there indications with reliable diagnostic advantages before prostate biopsy?” Urologe A, vol. 51, no. 9, pp. 1270–1277, 2012. View at Publisher · View at Google Scholar
  4. J. Walz, M. Marcy, J. T. Pianna, S. Brunelle, G. Gravis, and N. Salem, “Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer,” World Journal of Urology, vol. 29, no. 5, pp. 589–594, 2011. View at Publisher · View at Google Scholar
  5. J. Kurhanewicz, D. Vigneron, P. Carroll, and F. Coakley, “Multiparametric magnetic resonance imaging in prostate cancer: present and future,” Current Opinion in Urology, vol. 18, no. 1, pp. 71–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Aigner, G. Schäfer, E. Steiner et al., “Value of enhanced transrectal ultrasound targeted biopsy for prostate cancer diagnosis: a retrospective data analysis,” World Journal of Urology, vol. 30, no. 3, pp. 341–346, 2012. View at Publisher · View at Google Scholar
  7. B. Grabski, L. Baeurle, A. Loch, B. Wefer, U. Paul, and T. Loch, “Computerized transrectal ultrasound of the prostate in a multicenter setup (C-TRUS-MS): detection of cancer after multiple negative systematic random and in primary biopsies,” World Journal of Urology, vol. 29, no. 5, pp. 573–579, 2011. View at Publisher · View at Google Scholar
  8. L. A. M. Simmons, P. Autier, F. Zát'ura et al., “Detection, localisation and characterisation of prostate cancer by prostate HistoScanning,” British Journal of Urology International, vol. 110, no. 1, pp. 28–35, 2012. View at Publisher · View at Google Scholar
  9. H. U. Ahmed, “The index lesion and the origin of prostate cancer,” New England Journal of Medicine, vol. 361, no. 17, pp. 1704–1706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. B. Delongchamps, M. Rouanne, T. Flam et al., “Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging,” British Journal of Urology International, vol. 107, no. 9, pp. 1411–1418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology, vol. 60, no. 2, pp. 264–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Bigler, R. E. Deering, and M. K. Brawer, “Comparison of microscopic vascularity in benign and malignant prostate tissue,” Human Pathology, vol. 24, no. 2, pp. 220–226, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrasonic Imaging, vol. 20, no. 4, pp. 260–274, 1998. View at Google Scholar · View at Scopus
  14. M. Brock, C. Von Bodman, R. J. Palisaar et al., “The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients,” Journal of Urology, vol. 187, no. 6, pp. 2039–2043, 2012. View at Publisher · View at Google Scholar
  15. J. Walz, M. Marcy, T. Maubon et al., “Real time elastography in the diagnosis of prostate cancer: comparison of preoperative imaging and histology after radical prostatectomy,” Progres en Urologie, vol. 21, no. 13, pp. 925–931, 2011. View at Publisher · View at Google Scholar
  16. K. König, U. Scheipers, A. Pesavento, A. Lorenz, H. Ermert, and T. Senge, “Initial experiences with real-time elastography guided biopsies of the prostate,” Journal of Urology, vol. 174, no. 1, pp. 115–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. E. Pelzer, J. Bektic, A. P. Berger et al., “Are transition zone biopsies still necessary to improve prostate cancer detection? Results from the tyrol screening project,” European Urology, vol. 48, no. 6, pp. 916–921, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. R. Greene, T. M. Wheeler, S. Egawa, J. K. Dunn, and P. T. Scardino, “A comparison of the morphological features of cancer arising in the transition zone and in the peripheral zone of the prostate,” Journal of Urology, vol. 146, no. 4, pp. 1069–1076, 1991. View at Google Scholar · View at Scopus
  19. I. M. Thompson, D. K. Pauler, P. J. Goodman et al., “Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter,” New England Journal of Medicine, vol. 350, no. 22, pp. 2239–2246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Aigner, L. Pallwein, D. Junker et al., “Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less,” Journal of Urology, vol. 184, no. 3, pp. 913–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Roethke, M. P. Lichy, L. Jurgschat et al., “Tumorsize dependent detection rate of endorectal MRI of prostate cancer—a histopathologic correlation with whole-mount sections in 70 patients with prostate cancer,” European Journal of Radiology, vol. 79, no. 2, pp. 189–195, 2011. View at Publisher · View at Google Scholar
  22. M. Sumura, K. Shigeno, T. Hyuga, T. Yoneda, H. Shiina, and M. Igawa, “Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study,” International Journal of Urology, vol. 14, no. 9, pp. 811–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Langer, T. H. Van Der Kwast, A. J. Evans et al., “Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2-sparse versus dense cancers,” Radiology, vol. 249, no. 3, pp. 900–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Brock, T. Eggert, R. J. Palisaar et al., “Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer,” Journal of Urology, vol. 189, no. 1, pp. 93–98, 2013. View at Publisher · View at Google Scholar
  25. Y. Nygård, S. A. Haukaas, and J. E. Waage, “Combination of real-time elastography and urine prostate cancer gene 3 (PCA3) detects more than 97% of significant prostate cancers,” Scandinavian Journal of Urology and Nephrology. In press.