Table of Contents Author Guidelines Submit a Manuscript

The Scientific World Journal has retracted this article. The article was found to contain images with signs of duplication and manipulation in Figures 2 and 3.

The Scientific World Journal
Volume 2012 (2012), Article ID 345983, 11 pages
Research Article

Flavonoid-Deficient Mutants in Grass Pea (Lathyrus sativus L.): Genetic Control, Linkage Relationships, and Mapping with Aconitase and S-Nitrosoglutathione Reductase Isozyme Loci

Department of Botany, R.P.M. College, University of Calcutta, Uttarpara, West Bengal, Hooghly 712 258, India

Received 25 October 2011; Accepted 25 December 2011

Academic Editors: K. Chakravarty, E. Olmos, and K. Shoji

Copyright © 2012 Dibyendu Talukdar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Two flavonoid-deficient mutants, designated as fldL-1 and fldL-2, were isolated in EMS-mutagenized (0.15%, 10 h) M2 progeny of grass pea (Lathyrus sativus L.). Both the mutants contained total leaf flavonoid content only 20% of their mother varieties. Genetic analysis revealed monogenic recessive inheritance of the trait, controlled by two different nonallelic loci. The two mutants differed significantly in banding patterns of leaf aconitase (ACO) and S-nitrosoglutathione reductase (GSNOR) isozymes, possessing unique bands in Aco 1, Aco 2, and Gsnor 2 loci. Isozyme loci inherited monogenically showing codominant expression in F2 (1 : 2 : 1) and backcross (1 : 1) segregations. Linkage studies and primary trisomic analysis mapped Aco 1 and fld 1 loci on extra chromosome of trisomic-I and Aco 2, fld 2, and Gsnor 2 on extra chromosome of trisomic-IV in linked associations.