Table of Contents Author Guidelines Submit a Manuscript
Retracted

The Scientific World Journal has retracted this article. The article was found to contain images with signs of duplication and manipulation in Figures 2 and 3.

View the full Retraction here.

References

  1. D. Talukdar, “Flavonoid-deficient mutants in grass pea (Lathyrus sativus L.): genetic control, linkage relationships, and mapping with aconitase and S-nitrosoglutathione reductase isozyme loci,” The Scientific World Journal, vol. 2012, Article ID 345983, 11 pages, 2012.
The Scientific World Journal
Volume 2012, Article ID 345983, 11 pages
http://dx.doi.org/10.1100/2012/345983
Research Article

Flavonoid-Deficient Mutants in Grass Pea (Lathyrus sativus L.): Genetic Control, Linkage Relationships, and Mapping with Aconitase and S-Nitrosoglutathione Reductase Isozyme Loci

Department of Botany, R.P.M. College, University of Calcutta, Uttarpara, West Bengal, Hooghly 712 258, India

Received 25 October 2011; Accepted 25 December 2011

Academic Editors: K. Chakravarty, E. Olmos, and K. Shoji

Copyright © 2012 Dibyendu Talukdar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Taylor and E. Grotewold, “Flavonoids as developmental regulators,” Current Opinion in Plant Biology, vol. 8, no. 3, pp. 317–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Miyagi, A. S. Om, K. M. Chee, and M. R. Bennink, “Inhibition of azoxymethane-induced colon cancer by orange juice,” Nutrition and Cancer, vol. 36, no. 2, pp. 224–229, 2000. View at Google Scholar · View at Scopus
  3. T. A. Holton and E. C. Cornish, “Genetics and biochemistry of anthocyanin biosynthesis,” Plant Cell, vol. 7, no. 7, pp. 1071–1083, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Chopra, A. Hoshino, J. Boddu, and S. Iida, “Flavonoid pigments as tools in molecular genetics,” in The Science of Flavonoids, E. Grotewold, Ed., pp. 147–173, The Ohio State University, Columbus, Ohio, USA, 2006. View at Google Scholar
  5. R. Koes, W. Verweij, and F. Quattrocchio, “Flavonoids: a colorful model for the regulation and evolution of biochemical pathways,” Trends in Plant Science, vol. 10, no. 5, pp. 236–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Li, T. M. Ou-Lee, R. Raba, R. G. Amundson, and R. L. Last, “Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation,” Plant Cell, vol. 5, no. 2, pp. 171–179, 1993. View at Google Scholar · View at Scopus
  7. B. W. Shirley, W. L. Kubasek, G. Storz et al., “Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis,” Plant Journal, vol. 8, no. 5, pp. 659–671, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Albert, M. Delseny, and M. Devie, “Banyuls, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat,” Plant Journal, vol. 11, no. 2, pp. 289–299, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Bieza and R. Lois, “An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics,” Plant Physiology, vol. 126, no. 3, pp. 1105–1115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Sharma, M. Cortes-Cruz, K. R. Ahern, M. McMullen, T. P. Brutnell, and S. Chopra, “Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize,” Genetics, vol. 188, no. 1, pp. 69–79, 2011. View at Publisher · View at Google Scholar
  11. R. A. Dixon and L. W. Sumner, “Legume natural products: understanding and manipulating complex pathways for human and animal health,” Plant Physiology, vol. 131, no. 3, pp. 878–885, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Filkowski, O. Kovalchuk, and I. Kovalchuk, “Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress,” Plant Journal, vol. 38, no. 1, pp. 60–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Alfenito, E. Souer, C. D. Goodman et al., “Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases,” Plant Cell, vol. 10, no. 7, pp. 1135–1149, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Bashandy, L. Taconnat, J.-P. Renou, Y. Meyer, and J.-P. Reichheld, “Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C,” Molecular Plant, vol. 2, no. 2, pp. 249–258, 2009. View at Publisher · View at Google Scholar
  15. J. B. Barroso, F. J. Corpas, A. Carreras et al., “Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress,” Journal of Experimental Botany, vol. 57, no. 8, pp. 1785–1793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Moeder, O. Del Pozo, D. A. Navarre, G. B. Martin, and D. F. Klessig, “Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana,” Plant Molecular Biology, vol. 63, no. 2, pp. 273–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Navarre, D. Wendehenne, J. Durner, R. Noad, and D. F. Klessig, “Nitric oxide modulates the activity of tobacco aconitase,” Plant Physiology, vol. 122, no. 2, pp. 573–582, 2000. View at Google Scholar · View at Scopus
  18. A. Sakamoto, M. Ueda, and H. Morikawa, “Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase,” FEBS Letters, vol. 515, no. 1–3, pp. 20–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Díaz, H. Achkor, E. Titarenko, and M. C. Martínez, “The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid,” FEBS Letters, vol. 543, no. 1–3, pp. 136–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Pastor-Cavada, R. Juan, J.E. Pastor, J. Girón-Calle, M. Alaiz, and J. Vioque, “Antioxidant activity in Lathyrus species,” Grain Legumes, vol. 54, pp. 10–11, 2009. View at Google Scholar
  21. D. Talukdar, “Dwarf mutations in grass pea (Lathyrus sativus L.): Origin, morphology, inheritance and linkage studies,” Journal of Genetics, vol. 88, no. 2, pp. 165–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Talukdar and A. K. Biswas, “Inheritance of flower and stipule characters in different induced mutant lines of grass pea (Lathyrus sativus L.),” Indian Journal of Genetics and Plant Breeding, vol. 67, pp. 396–400, 2007. View at Google Scholar
  23. D. Talukdar and A. K. Biswas, “Induced seed coat colour mutations and their inheritance in grass pea (Lathyrus sativus L.),” Indian Journal of Genetics and Plant Breeding, vol. 65, pp. 135–136, 2005. View at Google Scholar
  24. D. Talukdar, “Genetics of pod indehiscence in Lathyrus sativus L,” Journal of Crop Improvement, vol. 25, pp. 1–15, 2011. View at Google Scholar
  25. D. Talukdar, “Bold-seeded and seed coat colour mutations in grass pea (Lathyrus sativus L.): origin, morphology, genetic control and linkage analysis,” International Journal of Current Research, vol. 3, pp. 104–112, 2011. View at Google Scholar
  26. D. Talukdar, “Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses,” International Journal of Current Research, vol. 2, pp. 46–54, 2011. View at Google Scholar
  27. D. Talukdar, “Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: Induced mutagenesis and selection by salt stress,” Journal of Medicinal Plant Research, vol. 5, no. 16, pp. 3619–3628, 2011. View at Google Scholar
  28. D. Talukdar, “Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L during germination and early seedling growth,” Current Research Journal of Biological Sciences, vol. 3, pp. 116–123, 2011. View at Google Scholar
  29. D. Talukdar, “Ascorbate deficient semi-dwarf asfL1 mutant of grass pea (Lathyrus sativus L.) exhibits alterations in antioxidant defense,” Biologia Plantarum. In press.
  30. D. Talukdar and A. K. Biswas, “Seven different primary trisomics in grass pea (Lathyrus sativus L.). I. Cytogenetic characterisation,” Cytologia, vol. 72, no. 4, pp. 385–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Talukdar, “Cytogenetic characterization of seven different primary tetrasomics in grass pea (Lathyrus sativus L.),” Caryologia, vol. 61, no. 4, pp. 402–410, 2008. View at Google Scholar · View at Scopus
  32. D. Talukdar, “Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.),” Caryologia, vol. 63, no. 1, pp. 62–72, 2010. View at Google Scholar · View at Scopus
  33. D. Talukdar, “Reciprocal translocations in grass pea (Lathyrus sativus l.): pattern of transmission, detection of multiple interchanges and their independence,” Journal of Heredity, vol. 101, no. 2, pp. 169–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Talukdar, “Cytogenetic analysis of a novel yellow flower mutant carrying a reciprocal translocation in grass pea (Lathyrus sativus L.),” Journal of Biological Research-Thessaloniki, vol. 15, pp. 123–134, 2011. View at Google Scholar
  35. M. A. Chowdhury and A. E. Slinkard, “Genetics of isozymes in grasspea,” Journal of Heredity, vol. 91, no. 2, pp. 142–145, 2000. View at Google Scholar · View at Scopus
  36. J. F. Gutiérrez, V. Francisca, and J. V. Francisco, “Genetic mapping of isozyme loci in Lathyrus sativus L,” Lathyrus Lathyrism Newsletter, vol. 2, pp. 74–78, 2001. View at Google Scholar
  37. D. Talukdar, “Allozyme variations in leaf esterase and root peroxidase isozymes and linkage with dwarfing genes in induced dwarf mutants of grass pea (Lathyrus sativus L.),” International Journal of Genetics and Molecular Biology, vol. 2, no. 6, pp. 112–120, 2010. View at Google Scholar · View at Scopus
  38. D. Talukdar and A. K. Biswas, “Seven different primary trisomics in grass pea (Lathyrus sativus L.). II. Pattern of transmission,” Cytologia, vol. 73, no. 2, pp. 129–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Wu, K. Fu, Y.-J. Fu et al., “Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves,” Molecules, vol. 14, no. 3, pp. 1032–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. J. Cardy, C. W. Stuber, and M. M. Goodman, Techniques for starch gel electrophoresis of enzymes from maize (Zea mays L.), Institute of Statistics, Mimeograph Series No. 1317, N.C. State University, Raleigh, NC, USA, 1980.
  41. B. J. Cardy and W. D. Beversdorf, “A procedure for the starch gel electrophoretic detection of isozymes of soybean (Glycine max [L] Merr.),” Technical Bulletin, no. 119/8401, Department of Crop Science, University of Guelph, Guelph, Canada, 1984.
  42. M. R. Fernández, J. A. Biosca, and X. Parés, “S-nitrosoglutathione reductase activity of human and yeast glutathione-dependent formaldehyde dehydrogenase and its nuclear and cytoplasmic localisation,” Cellular and Molecular Life Sciences, vol. 60, no. 5, pp. 1013–1018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. N. F. Weeden, “A suggestion for the nomenclature of isozyme loci,” Pisum Newsletter, vol. 20, pp. 44–45, 1988. View at Google Scholar
  44. D. D. Kosambi, “The estimation of map distance from recombination values,” Annals of Eugenics, vol. 12, pp. 172–175, 1944. View at Google Scholar
  45. R. A. Dixon and N. L. Paiva, “Stress-induced phenylpropanoid metabolism,” Plant Cell, vol. 7, no. 7, pp. 1085–1097, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. I. M. Van Der Meer, M. E. Stam, A. J. Van Tunen, J. N. M. Mol, and A. R. Stuitje, “Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility,” Plant Cell, vol. 4, no. 3, pp. 253–262, 1992. View at Google Scholar · View at Scopus
  47. Y. Mo, C. Nagel, and L. P. Taylor, “Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 15, pp. 7213–7217, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Shahpiri, B. Svensson, and C. Finnie, “The NADPH-dependent thioredoxin reductase/thioredoxin system in germinating barley seeds: gene expression, protein profiles, and interactions between isoforms of thioredoxin h and thioredoxin reductase,” Plant Physiology, vol. 146, no. 2, pp. 789–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Zoro Bi, A. Maquet, B. Wathelet, and J.-P. Baudoin, “Genetic control of isozymes in the primary gene pool of Phaseolus lunatus L,” Biotechnology, Agronomy, Society and Environment, vol. 3, pp. 10–27, 1999. View at Google Scholar
  50. L. A. Amberger, R. C. Shoemaker, and R. G. Palmer, “Inheritance of two independent isozyme variants in soybean plants derived from tissue culture,” Theoretical and Applied Genetics, vol. 84, no. 5-6, pp. 600–607, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Wolko and N. F. Weeden, “Additional markers for chromosome 6,” Pisum Newsletter, vol. 22, pp. 71–74, 1990. View at Google Scholar
  52. B. Román, Z. Satovic, D. Pozarkova et al., “Development of a composite map in Vicia faba, breeding applications and future prospects,” Theoretical and Applied Genetics, vol. 108, no. 6, pp. 1079–1088, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Zamir and G. Ladizinsky, “Genetics of allozyme variants and linkage groups in lentil,” Euphytica, vol. 33, no. 2, pp. 329–336, 1984. View at Publisher · View at Google Scholar · View at Scopus
  54. P. M. Gaur and A. E. Slinkard, “Genetic control and linkage relations of additional isozyme markers in chick-pea,” Theoretical and Applied Genetics, vol. 80, no. 5, pp. 648–656, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Kazan, F. J. Muehlbauer, N. E. Weeden, and G. Ladizinsky, “Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.),” Theoretical and Applied Genetics, vol. 86, no. 4, pp. 417–426, 1993. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Helentjaris, M. Slocum, S. Wright, A. Schaefer, and J. Nienhuis, “Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms,” Theoretical and Applied Genetics, vol. 72, no. 6, pp. 761–769, 1986. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Bartošová, B. Obert, T. Takáč, A. Kormuták, and A. Pretová, “Using enzyme polymorphism to identify the gametic origin of flax regenerants,” Acta Biologica Cracoviensia Series Botanica, vol. 47, no. 1, pp. 173–178, 2005. View at Google Scholar
  58. D. R. Malaviya, A. K. Roy, A. Tiwari, P. Kaushal, and B. Kumar, “In vitro callusing and regeneration in Trifolium resupinatum—a fodder legume,” Cytologia, vol. 71, no. 3, pp. 229–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. B. R. Hedges and R. G. Palmer, “Tests of linkage of isozyme loci with five primary trisomics in soybean, Glycine max (L.) Merr,” Journal of Heredity, vol. 82, no. 6, pp. 494–496, 1991. View at Google Scholar · View at Scopus
  60. R. J. Singh, G. H. Chung, and R. L. Nelson, “Landmark research in legumes,” Genome, vol. 50, no. 6, pp. 525–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Talukdar, “Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.),” African Journal of Agricultural Research, vol. 4, no. 13, pp. 1549–1559, 2009. View at Google Scholar
  62. D. Talukdar, “The aneuploid switch: Extra-chromosomal effect on antioxidant defense through trisomic shift in Lathyrus sativus L.,” Indian Journal of Fundamental and Applied Life Sciences, vol. 1, no. 4, pp. 263–273, 2011. View at Google Scholar