Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 350826, 11 pages
http://dx.doi.org/10.1100/2012/350826
Review Article

Rottlerin and Cancer: Novel Evidence and Mechanisms

1Department of Physiology, University of Siena, Aldo Moro Street, 53100 Siena, Italy
2Department of Biology and Evolution, University of Ferrara, Luigi Borsari Street 46, 44100 Ferrara, Italy
3Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea

Received 9 October 2011; Accepted 14 November 2011

Academic Editors: R. M. Bukowski, A. Dricu, and T. K. Kwon

Copyright © 2012 E. Maioli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Newman, G. M. Cragg, and K. M. Snader, “Natural products as sources of new drugs over the period 1981–2002,” Journal of Natural Products, vol. 66, no. 7, pp. 1022–1037, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Greenwald, “Science, medicine, and the future: cancer chemoprevention,” British Medical Journal, vol. 324, no. 7339, pp. 714–718, 2002. View at Google Scholar · View at Scopus
  3. B. Vogelstein and K. W. Kinzler, “Cancer genes and the pathways they control,” Nature Medicine, vol. 10, no. 8, pp. 789–799, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. V. S. Rao and T. R. Seshadri, “Kamala dye as an anthelmintic,” Proceedings of the Indian Academy of Sciences. Section A, vol. 26, no. 3, pp. 178–181, 1947. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Mitra and L. D. Kapoor, “Kamala—the national flower of India—its ancient history and uses in Indian medicine,” Indian Journal of History of Science, vol. 11, no. 2, pp. 125–132, 1976. View at Google Scholar · View at Scopus
  6. S. C. Thakur, S. S. Thakur, S. K. Chaube, and S. P. Singh, “An etheral extract of Kamala (Mallotus philippinensis (Moll.Arg) Lam.) seed induce adverse effects on reproductive parameters of female rats,” Reproductive Toxicology, vol. 20, no. 1, pp. 149–156, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. A. Daikonya, S. Katsuki, J. B. Wu, and S. Kitanaka, “Anti-allergic agents from natural sources (4): anti-allergic activity of new phloroglucinol derivatives from Mallotus philippensis (Euphorbiaceae),” Chemical and Pharmaceutical Bulletin, vol. 50, no. 12, pp. 1566–1569, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. V. R. Patel, M. G. Patel, and R. K. Patel, “Development and validation of a RP-HPLC method for quantification of rottlerin in Kamala (Mallotus philppinensis),” Drug Invention Today, vol. 1, pp. 116–118, 2009. View at Google Scholar
  9. D. Zhang, V. Anantharam, A. Kanthasamy, and A. G. Kanthasamy, “Neuroprotective effect of protein kinase Cδ inhibitor rottlerin in cell culture and animal models of Parkinson's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 3, pp. 913–922, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. Gschwendt, H. J. Muller, K. Kielbassa et al., “Rottlerin, a novel protein kinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 199, no. 1, pp. 93–98, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, “Specificity and mechanism of action of some commonly used protein kinase inhibitors,” Biochemical Journal, vol. 351, no. 1, pp. 95–105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Bain, L. Plater, M. Elliott et al., “The selectivity of protein kinase inhibitors: a further update,” Biochemical Journal, vol. 408, no. 3, pp. 297–315, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. P. Soltoff, “Rottlerin: an inappropriate and ineffective inhibitor of PKCδ,” Trends in Pharmacological Sciences, vol. 28, no. 9, pp. 453–458, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. A. Tapia, R. T. Jensen, and L. J. García-Marín, “Rottlerin inhibits stimulated enzymatic secretion and several intracellular signaling transduction pathways in pancreatic acinar cells by a non-PKC-δ-dependent mechanism,” Biochimica et Biophysica Acta, vol. 1763, no. 1, pp. 25–38, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. P. Soltoff, “Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cδ tyrosine phosphorylation,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 37986–37992, 2001. View at Google Scholar · View at Scopus
  16. C. Matta, T. Juhász, Z. Szíjgyártó et al., “PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures,” Biochimie, vol. 93, pp. 149–159, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. B. Hendey, C. L. Zhu, and S. Greenstein, “Fas activation opposes PMA-stimulated changes in the localization of PKCδ: a mechanism for reducing neutrophil adhesion to endothelial cells,” Journal of Leukocyte Biology, vol. 71, no. 5, pp. 863–870, 2002. View at Google Scholar · View at Scopus
  18. E. Kontny, M. Kurowska, K. Szczepanska, and W. Maslinski, “Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes,” Journal of Leukocyte Biology, vol. 67, no. 2, pp. 249–258, 2000. View at Google Scholar · View at Scopus
  19. J. Y. Cho, K. M. Skubitz, D. R. Katz, and B. M. Chain, “CD98-dependent homotypic aggregation is associated with translocation of protein kinase Cδ and activation of mitogen-activated protein kinases,” Experimental Cell Research, vol. 286, no. 1, pp. 1–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. McCracken, L. J. Miraglia, R. A. McKay, and J. S. Strobl, “Protein kinase C delta is a prosurvival factor in human breast tumor cell lines,” Molecular Cancer Therapeutics, vol. 2, no. 3, pp. 273–281, 2003. View at Google Scholar · View at Scopus
  21. D. N. Jackson and D. A. Foster, “The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival,” FASEB Journal, vol. 18, no. 6, pp. 627–636, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. C. Brodie and P. M. Blumberg, “Regulation of cell apoptosis by protein kinase c δ,” Apoptosis, vol. 8, no. 1, pp. 19–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Emoto, Y. Manome, G. Meinhardt et al., “Proteolytic activation of protein kinase C δ by an ICE-like protease in apoptotic cells,” EMBO Journal, vol. 14, no. 24, pp. 6148–6156, 1995. View at Google Scholar · View at Scopus
  24. T. Ghayur, M. Hugunin, R. V. Talanian et al., “Proteolytic activation of protein kinase C δ by an ICE/CED 3-like protease induces characteristics of apoptosis,” Journal of Experimental Medicine, vol. 184, no. 6, pp. 2399–2404, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. R. U. Jänicke, M. L. Sprengart, M. R. Wati, and A. G. Porter, “Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis,” Journal of Biological Chemistry, vol. 273, no. 16, pp. 9357–9360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Anantharam, M. Kitazawa, J. Wagner, S. Kaul, and A. G. Kanthasamy, “Caspase-3-dependent proteolytic cleavage of protein kinase Cδ is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl,” Journal of Neuroscience, vol. 22, no. 5, pp. 1738–1751, 2002. View at Google Scholar · View at Scopus
  27. J. Zhang, N. Liu, J. Zhang, S. Liu, Y. Liu, and D. Zheng, “PKCδ protects human breast tumor MCF-7 cells against tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis,” Journal of Cellular Biochemistry, vol. 96, no. 3, pp. 522–532, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Basu, S. Mohanty, and B. Sun, “Differential sensitivity of breast cancer cells to tumor necrosis factor-α: involvement of protein kinase C,” Biochemical and Biophysical Research Communications, vol. 280, no. 3, pp. 883–891, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. D. C. S. Huang and A. Strasser, “BH3-only proteins - Essential initiators of apoptotic cell death,” Cell, vol. 103, no. 6, pp. 839–842, 2000. View at Google Scholar · View at Scopus
  30. R. J. Youle and A. Strasser, “The BCL-2 protein family: opposing activities that mediate cell death,” Nature Reviews Molecular Cell Biology, vol. 9, no. 1, pp. 47–59, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. Klein, F. McCormick, and A. Levitzki, “Killing time for cancer cells,” Nature Reviews Cancer, vol. 5, no. 7, pp. 573–580, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. S. Clark, K. A. West, P. M. Blumberg, and P. A. Dennis, “Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCδ promotes cellular survival and chemotherapeutic resistance,” Cancer Research, vol. 63, no. 4, pp. 780–786, 2003. View at Google Scholar · View at Scopus
  33. H. Ni, M. Ergin, S. S. Tibudan, M. F. Denning, K. F. Izban, and S. Alkan, “Protein kinase C-delta is commonly expressed in multiple myeloma cells and its downregulation by rottlerin causes apoptosis,” British Journal of Haematology, vol. 121, no. 6, pp. 849–856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Ringshausen, F. Schneller, C. Bogner et al., “Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cδ,” Blood, vol. 100, no. 10, pp. 3741–3748, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. G. K. Lønne, K. C. Masoumi, J. Lennartsson, and C. Larsson, “Protein kinase Cδ supports survival of MDA-MB-231 breast cancer cells by suppressing the ERK1/2 pathway,” Journal of Biological Chemistry, vol. 284, no. 48, pp. 33456–33465, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. D. Kim, K. W. Seo, E. A. Lee, N. N. Quang, H. R. Cho, and B. Kwon, “A novel mouse PKCδ splice variant, PKCδIX, inhibits etoposide-induced apoptosis,” Biochemical and Biophysical Research Communications, vol. 410, no. 2, pp. 177–182, 2011. View at Publisher · View at Google Scholar · View at PubMed
  37. C. Torricelli, V. Fortino, E. Capurro et al., “Rottlerin inhibits the nuclear factor κB/Cyclin-D1 cascade in MCF-7 breast cancer cells,” Life Sciences, vol. 82, no. 11-12, pp. 638–643, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. I. Vancurova, V. Miskolci, and D. Davidson, “NF-κB activation in tumor necrosis factor α-stimulated neutrophils is mediated by protein kinase Cδ. Correlation to nuclear IκBα,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 19746–19752, 2001. View at Publisher · View at Google Scholar · View at PubMed
  39. P. Storz, H. Döppler, and A. Toker, “Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signaling,” Molecular and Cellular Biology, vol. 24, no. 7, pp. 2614–2626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Torricelli, G. Valacchi, and E. Maioli, “Novel PKCs activate ERK through PKD1 in MCF-7 cells,” In Vitro Cellular and Developmental Biology, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. D. M. Tillman, K. Izeradjene, K. S. Szucs, L. Douglas, and J. A. Houghton, “Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C,” Cancer Research, vol. 63, no. 16, pp. 5118–5125, 2003. View at Google Scholar · View at Scopus
  42. K. S. Song, J. S. Kim, E. J. Yun et al., “Rottlerin induces autophagy and apoptotic cell death through a PKC-δ-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis,” Autophagy, vol. 4, no. 5, pp. 650–658, 2008. View at Google Scholar · View at Scopus
  43. J. H. Lim, J. W. Park, S. H. Kim, Y. H. Choi, K. S. Choi, and T. K. Kwon, “Rottlerin induces pro-apoptotic endoplasmic reticulum stress through the protein kinase C-δ-independent pathway in human colon cancer cells,” Apoptosis, vol. 13, no. 11, pp. 1378–1385, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. H. Lim, J. W. Park, K. S. Choi, Y. B. Park, and T. K. Kwon, “Rottlerin induces apoptosis via death receptor 5 (DR5) upregulation through CHOP-dependent and PKC δ-independent mechanism in human malignant tumor cells,” Carcinogenesis, vol. 30, no. 5, pp. 729–736, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. Oyadomari and M. Mori, “Roles of CHOP/GADD153 in endoplasmic reticulum stress,” Cell Death and Differentiation, vol. 11, no. 4, pp. 381–389, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. I. Ohno, G. Eibl, I. Odinokova et al., “Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family,” American Journal of Physiology, vol. 298, no. 1, pp. G63–G73, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. T. Kaufmann, L. Tai, P. G. Ekert et al., “The BH3-Only Protein Bid Is Dispensable for DNA Damage- and Replicative Stress-Induced Apoptosis or Cell-Cycle Arrest,” Cell, vol. 129, no. 2, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. E. H. Kim, S. U. Kim, and K. S. Choi, “Rottlerin sensitizes glioma cells to TRAIL-induced apoptosis by inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP,” Oncogene, vol. 24, no. 5, pp. 838–849, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. E. P. Jane, D. R. Premkumar, and I. F. Pollack, “Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 3, pp. 1070–1080, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. T. Kurosu, K. Tsuji, A. Kida, T. Koyama, M. Yamamoto, and O. Miura, “Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-δ,” Oncogene, vol. 26, no. 21, pp. 2975–2987, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. E. L. Eskelinen, “New insights into the mechanisms of macroautophagy in mammalian cells,” International Review of Cell and Molecular Biology, vol. 266, pp. 207–247, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. G. Parmer, M. D. Ward, and W. N. Hait, “Effects of rottlerin, an inhibitor of calmodulin-dependent protein kinase III, on cellular proliferation, viability, and cell cycle distribution in malignant glioma cells,” Cell Growth and Differentiation, vol. 8, no. 3, pp. 327–334, 1997. View at Google Scholar · View at Scopus
  53. B. Ozpolat, U. Akar, K. Mehta, and G. Lopez-Berenstein, “PKCδ and tissue transglutaminase are novel inhibitors of autophagy in pancreatic cancer cells,” Autophagy, vol. 3, pp. 480–483, 2007. View at Google Scholar
  54. U. Akar, B. Ozpolat, K. Mehta, J. Fok, Y. Kondo, and G. Lopez-Berestein, “Tissue transglutaminase inhibits autophagy in pancreatic cancer cells,” Molecular Cancer Research, vol. 5, no. 3, pp. 241–249, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. F. Rossin, M. D'Eletto, D. Macdonald, M. G. Farrace, and M. Piacentini, “TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy,” Amino Acids. In press. View at Publisher · View at Google Scholar · View at PubMed
  56. J. M. Brown, C. M. Schwanke, M. A. Pershouse, J. C. Pfau, and A. Holian, “Effects of rottlerin on silica-exacerbated systemic autoimmune disease in New Zealand mixed mice,” American Journal of Physiology, vol. 289, no. 6, pp. L990–L998, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. P. Mann, A. Verma, G. Sethi et al., “Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-κB in cancer cells: delineation of a novel pathway,” Cancer Research, vol. 66, no. 17, pp. 8788–8795, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. G. Valacchi, A. Pecorelli, M. Mencarelli et al., “Rottlerin: a multifaced regulator of keratinocyte cell cycle,” Experimental Dermatology, vol. 18, no. 6, pp. 516–521, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. E. Maioli, L. Greci, K. Soucek et al., “Rottlerin inhibits ROS formation and prevents NFB activation in MCF-7 and HT-29 cells,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 742936, 7 pages, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. K. Mehta, J. Fok, F. R. Miller, D. Koul, and A. A. Sahin, “Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer,” Clinical Cancer Research, vol. 10, no. 23, pp. 8068–8076, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. P. Sini, D. James, C. Chresta, and S. Guichard, “Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells,” Autophagy, vol. 6, no. 4, pp. 553–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. J. O. Dowling, M. Pollak, and N. Sonenberg, “Current status and challenges associated with targeting mTOR for cancer therapy,” BioDrugs, vol. 23, no. 2, pp. 77–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Shor, J. J. Gibbons, R. T. Abraham, and K. Yu, “Targeting mTOR globally in cancer: thinking beyond rapamycin,” Cell Cycle, vol. 8, no. 23, pp. 3831–3837, 2009. View at Google Scholar · View at Scopus
  65. A. D. Balgi, B. D. Fonseca, E. Donohue et al., “Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling,” PLoS ONE, vol. 4, no. 9, Article ID e7124, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. K. Inoki, T. Zhu, and K. L. Guan, “TSC2 mediates cellular energy response to control cell growth and survival,” Cell, vol. 115, no. 5, pp. 577–590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. W. Y. Cheng, L. G. D. Fryer, D. Carling, and P. R. Shepherd, “Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 15719–15722, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. G. Hardie, D. Carling, and M. Carlson, “The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?” Annual Review of Biochemistry, vol. 67, pp. 821–855, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. S. P. Soltoff, “Evidence that tyrphostins AG10 and AG18 are mitochondrial uncouplers that alter phosphorylation-dependent cell signaling,” Journal of Biological Chemistry, vol. 279, no. 12, pp. 10910–10918, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. W. Scott, F. A. Ross, J. K. D. Liu, and D. G. Hardie, “Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the γ subunit,” EMBO Journal, vol. 26, no. 3, pp. 806–815, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. A. Woods, S. R. Johnstone, K. Dickerson et al., “LKB1 is the upstream kinase in the AMP-activated protein kinase cascade,” Current Biology, vol. 13, no. 22, pp. 2004–2008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Kojima, H. Motoshima, A. Tsutsumi et al., “Rottlerin activates AMPK possibly through LKB1 in vascular cells and tissues,” Biochemical and Biophysical Research Communications, vol. 376, no. 2, pp. 434–438, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. J. M. Cacicedo, N. Yagihashi, J. F. Keaney, N. B. Ruderman, and Y. Ido, “AMPK inhibits fatty acid-induced increases in NF-κB transactivation in cultured human umbilical vein endothelial cells,” Biochemical and Biophysical Research Communications, vol. 324, no. 4, pp. 1204–1209, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. F. Yeung, J. E. Hoberg, C. S. Ramsey et al., “Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase,” EMBO Journal, vol. 23, no. 12, pp. 2369–2380, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi, “Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, in a human hepatocellular carcinoma cell line,” Biochemical and Biophysical Research Communications, vol. 287, no. 2, pp. 562–567, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. Z. Feng, H. Zhang, A. J. Levine, and S. Jin, “The coordinate regulation of the p53 and mTOR pathways in cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8204–8209, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. A. V. Budanov and M. Karin, “p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling,” Cell, vol. 134, no. 3, pp. 451–460, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Liang, S. H. Shao, Z. X. Xu et al., “The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis,” Nature Cell Biology, vol. 9, no. 2, pp. 218–224, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. H. Daitoku, M. Hatta, H. Matsuzaki et al., “Silent information regulator 2 potentiates Foxo 1-mediated transcription through its deacetylase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10042–10047, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. N. Hariharan, Y. Maejima, J. Nakae, J. Paik, R. A. Depinho, and J. Sadoshima, “Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes,” Circulation Research, vol. 107, no. 12, pp. 1470–1482, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. P. F. Dijkers, R. H. Medema, C. Pals et al., “Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1,” Molecular and Cellular Biology, vol. 20, no. 24, pp. 9138–9148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. W. J. Nelson, “Regulation of cell-cell adhesion by the cadherin-catenin complex,” Biochemical Society Transactions, vol. 36, no. 2, pp. 149–155, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. E. H. J. Danen, “Integrins: regulators of tissue function and cancer progression,” Current Pharmaceutical Design, vol. 11, no. 7, pp. 881–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 21–33, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. C. J. Lin, C. Y. Lin, Y. Chen, S. H. Huang, and S. M. Wang, “Rottlerin inhibits migration of follicular thyroid carcinoma cells by PKCδ-independent destabilization of the focal adhesion complex,” Journal of Cellular Biochemistry, vol. 110, no. 2, pp. 428–437, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. W. Brenner, I. Greber, J. Gudejko-Thiel et al., “Migration of renal carcinoma cells is dependent on protein kinase Cδ via β1 integrin and focal adhesion kinase,” International Journal of Oncology, vol. 32, no. 5, pp. 1125–1131, 2008. View at Google Scholar
  90. S. Kharait, R. Dhir, D. Lauffenburger, and A. Wells, “Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells,” Biochemical and Biophysical Research Communications, vol. 343, no. 3, pp. 848–856, 2006. View at Publisher · View at Google Scholar · View at PubMed
  91. K. Masur, K. Lang, B. Niggemann, K. S. Zanker, and F. Entschladen, “High PKC α and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells,” Molecular Biology of the Cell, vol. 12, no. 7, pp. 1973–1982, 2001. View at Google Scholar · View at Scopus
  92. S. Sarkar and V. W. Yong, “Reduction of protein kinase C delta attenuates tenascin-C stimulated glioma invasion in three-dimensional matrix,” Carcinogenesis, vol. 31, no. 2, pp. 311–317, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. S. K. Park, Y. S. Hwang, K. K. Park, H. J. Park, J. Y. Seo, and W. Y. Chung, “Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCδ-mediated signaling in MCF-7 human breast cancer cells,” Carcinogenesis, vol. 30, no. 7, pp. 1225–1233, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. J. F. Liu, M. Crépin, J. M. Liu, D. Barritault, and D. Ledoux, “FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway,” Biochemical and Biophysical Research Communications, vol. 293, no. 4, pp. 1174–1182, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. I. M. Hussaini, C. Trotter, Y. Zhao et al., “Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line,” American Journal of Pathology, vol. 170, no. 1, pp. 356–365, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus