Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 404590, 7 pages
http://dx.doi.org/10.1100/2012/404590
Clinical Study

Influence of Implantable Hearing Aids and Neuroprosthesison Music Perception

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Halle (Saale), 06120 Halle, Germany

Received 16 January 2012; Accepted 9 February 2012

Academic Editors: J. Gavilán and M. Schloss

Copyright © 2012 Torsten Rahne et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Gfeller, J. Oleson, J. F. Knutson, P. Breheny, V. Driscoll, and C. Olszewski, “Multivariate predictors of music perception and appraisal by adult cochlear implant users,” Journal of the American Academy of Audiology, vol. 19, no. 2, pp. 120–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Leek, M. R. Molis, L. R. Kubli, and J. B. Tufts, “Enjoyment of music by elderly hearing-impaired listeners,” Journal of the American Academy of Audiology, vol. 19, no. 6, pp. 519–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. American Standards Association, Acoustic Terminology, American Standards Association, S.1.1, New York, NY, USA, 1960.
  4. M. Sankiewicz and G. Budzyński, “Reflections on sound timbre definitions,” Archives of Acoustics, vol. 32, no. 3, pp. 591–602, 2007. View at Google Scholar · View at Scopus
  5. S. McAdams, S. Winsberg, S. Donnadieu, G. De Soete, and J. Krimphoff, “Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes,” Psychological Research, vol. 58, no. 3, pp. 177–192, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Terasawa, M. Slaney, and J. Berger, “The thirteen colors of timbre,” in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 323–326, New Paltz, NY, USA, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Emiroglu and B. Kollmeier, “Timbre discrimination in normal-hearing and hearing-impaired listeners under different noise conditions,” Brain Research, vol. 1220, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Cusack and B. Roberts, “Effects of differences in timbre on sequential grouping,” Perception and Psychophysics, vol. 62, no. 5, pp. 1112–1120, 2000. View at Google Scholar · View at Scopus
  9. P. Iverson, “Auditory stream segregation by musical timbre: effects of static and dynamic acoustic attributes,” Journal of Experimental Psychology, vol. 21, no. 4, pp. 751–763, 1995. View at Google Scholar · View at Scopus
  10. T. Rahne, C. Rasinski, and K. Neumann, “Measuring timbre discrimination with cross-faded synthetic tones,” Journal of Neuroscience Methods, vol. 189, no. 2, pp. 176–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Rahne, L. Bohme, and G. Gotze, “Timbre discrimination in cochlear implant users and normal hearing subjects using cross-faded synthetic tones,” Journal of Neuroscience Methods, vol. 199, no. 2, pp. 290–295, 2011. View at Publisher · View at Google Scholar
  12. E. Tellman, L. Haken, and B. Holloway, “Timbre morphing of sounds with unequal numbers of features,” Journal of the Audio Engineering Society, vol. 43, no. 9, pp. 678–689, 1995. View at Google Scholar
  13. B. C. J. Moore, “Relation between the critical bandwidth and the frequency difference limen,” Journal of the Acoustical Society of America, vol. 55, no. 2, p. 359, 1974. View at Google Scholar · View at Scopus
  14. J. J. Galvin, Q. J. Fu, and S. Oba, “Effect of instrument timbre on melodic contour identification by cochlear implant users,” Journal of the Acoustical Society of America, vol. 124, no. 4, pp. EL189–EL195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. W. di Nardo, A. Scorpecci, S. Giannantonio, F. Cianfrone, and G. Paludetti, “Improving melody recognition in cochlear implant recipients through individualized frequency map fitting,” European Archives of Oto-Rhino-Laryngology, vol. 268, no. 1, pp. 27–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Won, W. R. Drennan, R. S. Kang, and J. T. Rubinstein, “Psychoacoustic abilities associated with music perception in cochlear implant users,” Ear and Hearing, vol. 31, no. 6, pp. 796–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Gfeller, S. Witt, M. A. Mehr, G. Woodworth, and J. Knutson, “Effects of frequency, instrumental family, and cochlear implant type on timbre recognition and appraisal,” Annals of Otology, Rhinology and Laryngology, vol. 111, no. 4, pp. 349–356, 2002. View at Google Scholar · View at Scopus
  18. D. Pressnitzer, J. Bestel, and B. Fraysse, “Music to electric ears: pitch and timbre perception by cochlear implant patients,” Annals of the New York Academy of Sciences, vol. 1060, pp. 343–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Hakansson, A. Tjellstrom, and U. Rosenhall, “Acceleration levels at hearing threshold with direct bone conduction versus conventional bone conduction,” Acta Oto-Laryngologica, vol. 100, no. 3-4, pp. 240–252, 1985. View at Google Scholar · View at Scopus
  20. A. F. Snik, E. A. Mylanus, D. W. Proops et al., “Consensus statements on the BAHA system: where do we stand at present?” The Annals of otology, rhinology and laryngology. Supplement, vol. 195, pp. 2–12, 2005. View at Google Scholar · View at Scopus
  21. A. J. Bosman, F. M. Snik, E. A. M. Mylanus, and W. R. J. Cremers, “Fitting range of the BAHA Intenso,” International Journal of Audiology, vol. 48, no. 6, pp. 346–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. F. M. Snik, A. J. Bosman, E. A. M. Mylanus, and C. W. R. J. Cremers, “Candidacy for the bone-anchored hearing aid,” Audiology and Neuro-Otology, vol. 9, no. 4, pp. 190–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. K. S. Hol, C. W. R. J. Cremers, W. Coppens-Schellekens, and A. F. M. Snik, “The BAHA Softband: a new treatment for young children with bilateral congenital aural atresia,” International Journal of Pediatric Otorhinolaryngology, vol. 69, no. 7, pp. 973–980, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. V. M. Verhagen, M. K. S. Hol, W. Coppens-Schellekens, A. F. M. Snik, and C. W. R. J. Cremers, “The Baha Softband. A new treatment for young children with bilateral congenital aural atresia,” International Journal of Pediatric Otorhinolaryngology, vol. 72, no. 10, pp. 1455–1459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Nicholson, L. Christensen, J. Dornhoffer, P. Martin, and L. Smith-Olinde, “Verification of speech spectrum audibility for pediatric baha softband users with craniofacial anomalies,” The Cleft Palate Craniofacial Journal, vol. 48, no. 1, pp. 56–65, 2011. View at Google Scholar
  26. W. E. Hodgetts, B. E. V. Hkansson, P. Hagler, and S. Soli, “A comparison of three approaches to verifying aided Baha output,” International Journal of Audiology, vol. 49, no. 4, pp. 286–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. E. Gockel, R. P. Carlyon, and C. J. Plack, “Pitch discrimination interference between binaural and monaural or diotic pitches,” Journal of the Acoustical Society of America, vol. 126, no. 1, pp. 281–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Santurette and T. Dau, “Binaural pitch perception in normal-hearing and hearing-impaired listeners,” Hearing Research, vol. 223, no. 1-2, pp. 29–47, 2007. View at Publisher · View at Google Scholar · View at Scopus