Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 482575, 15 pages
http://dx.doi.org/10.1100/2012/482575
Review Article

Blood-Brain Barrier Abnormalities Caused by HIV-1 gp120: Mechanistic and Therapeutic Implications

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street Room 255 Philadelphia, PA 19107, USA

Received 9 October 2011; Accepted 20 November 2011

Academic Editors: E. Martinez and L. Perez-Alvarez

Copyright © 2012 Jean-Pierre Louboutin and David S. Strayer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Zozulya, E. Reinke, D. C. Baiu, J. Karman, M. Sandor, and Z. Fabry, “Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1α chemokine and matrix metalloproteinases,” Journal of Immunology, vol. 178, no. 1, pp. 520–529, 2007. View at Google Scholar · View at Scopus
  2. P. Annunziata, “Blood-brain barrier changes during invasion of the central nervous system by HIV-1: old and new insights into the mechanism,” Journal of Neurology, vol. 250, no. 8, pp. 901–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. P. Mattson, N. J. Haughey, and A. Nath, “Cell death in HIV dementia,” Cell Death and Differentiation, vol. 12, no. 1, pp. 893–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. McArthur, B. J. Brew, and A. Nath, “Neurological complications of HIV infection,” The Lancet Neurology, vol. 4, no. 9, pp. 543–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Nath and N. Sacktor, “Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system,” Current Opinion in Neurology, vol. 19, no. 4, pp. 358–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. M. Ances and R. J. Ellis, “Dementia and neurocognitive disorders due to HIV-1 infection,” Seminars in Neurology, vol. 27, no. 1, pp. 86–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Avison, A. Nath, R. Greene-Avison, F. A. Schmitt, R. N. Greenberg, and J. R. Berger, “Neuroimaging correlates of HIV-associated BBB compromise,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 140–146, 2004. View at Publisher · View at Google Scholar
  8. C. K. Petito and K. S. Cash, “Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain,” Annals of Neurology, vol. 32, no. 5, pp. 658–666, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Power, P. A. Kong, T. O. Crawford et al., “Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier,” Annals of Neurology, vol. 34, no. 3, pp. 339–350, 1993. View at Google Scholar · View at Scopus
  10. L. M. Dallasta, L. A. Pisarov, J. E. Esplen et al., “Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis,” American Journal of Pathology, vol. 155, no. 6, pp. 1915–1927, 1999. View at Google Scholar · View at Scopus
  11. O. Finco, S. Nuti, M. T. De Magistris et al., “Induction of CD4+ T cell depletion in mice doubly transgenic for HIV gp120 and human CD4,” European Journal of Immunology, vol. 27, no. 6, pp. 1319–1324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Toneatto, O. Finco, H. Van Der Putten, S. Abrignani, and P. Annunziata, “Evidence of blood-brain barrier alteration and activation in HIV-1 gp120 transgenic mice,” AIDS, vol. 13, no. 17, pp. 2343–2348, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Cioni and P. Annunziata, “Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice,” Neuroscience Letters, vol. 330, no. 3, pp. 299–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kaul, G. A. Garden, and S. A. Lipton, “Pathways to neuronal injury and apoptosis in HIV-associated dementia,” Nature, vol. 410, no. 6831, pp. 988–994, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Kaul and S. A. Lipton, “Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8212–8216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Bansal, C. F. MacTutus, A. Nath, W. Maragos, K. F. Hauser, and R. M. Booze, “Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum,” Brain Research, vol. 879, no. 1-2, pp. 42–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. L. Nosheny, A. Bachis, E. Acquas, and I. Mocchetti, “Human immunodeficiency virus type 1 glycoprotein gp120 reduces the levels of brain-derived neurotrophic factor in vivo: potential implication for neuronal cell death,” European Journal of Neuroscience, vol. 20, no. 11, pp. 2857–2864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Louboutin, L. Agrawal, B. A. S. Reyes, E. J. Van Bockstaele, and D. S. Strayer, “HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes,” Neurobiology of Disease, vol. 34, no. 3, pp. 462–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Louboutin, L. Agrawal, B. A. Reyes, E. J. Van Bockstaele, and D. S. Strayer, “A rat model of human immunodeficiency virus 1 encephalopathy using envelope glycoprotein gp120 expression delivered by SV40 vectors,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 5, pp. 456–473, 2009. View at Publisher · View at Google Scholar
  20. A. A. Lackner and R. S. Veazey, “Current concepts in AIDS pathogenesis: insights from the SIV/Macaque model,” Annual Review of Medicine, vol. 58, pp. 461–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Thormar, “Maedi-visna virus and its relationship to human immunodeficiency virus,” AIDS Reviews, vol. 7, no. 4, pp. 233–245, 2005. View at Google Scholar · View at Scopus
  22. R. B. Meeker, “Feline immunodeficiency virus neuropathogenesis: from cats to calcium,” Journal of Neuroimmune Pharmacology, vol. 2, no. 2, pp. 154–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Toggas, E. Masliah, E. M. Rockenstein, G. F. Rall, C. R. Abraham, and L. Mucke, “Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice,” Nature, vol. 367, no. 6459, pp. 188–193, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Avgeropoulos, B. Kelley, L. Middaugh et al., “SCID mice with HIV encephalitis develop behavioral abnormalities,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 18, no. 1, pp. 13–20, 1998. View at Google Scholar
  25. L. Agrawal, J. P. Louboutin, B. A. S. Reyes, E. J. Van Bockstaele, and D. S. Strayer, “Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis,” Gene Therapy, vol. 13, no. 23, pp. 1645–1656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ellaurie, T. A. Calvelli, and A. Rubinstein, “Human immunodeficiency virus (HIV) circulating immune complexes in infected children,” AIDS Research and Human Retroviruses, vol. 6, no. 12, pp. 1437–1441, 1990. View at Google Scholar · View at Scopus
  27. C. A. Wiley Maria Baldwin and C. L. Achim, “Expression of HIV regulatory and structural mRNA in the central nervous system,” AIDS, vol. 10, no. 8, pp. 843–847, 1996. View at Google Scholar · View at Scopus
  28. A. Bachis, S. A. Aden, R. L. Nosheny, P. M. Andrews, and I. Mocchetti, “Axonal transport of human immunodeficiency virus type 1 envelope protein glycoprotein 120 is found in association with neuronal apoptosis,” Journal of Neuroscience, vol. 26, no. 25, pp. 6771–6780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. V. Jones, J. E. Bell, and A. Nath, “Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia,” AIDS, vol. 14, no. 17, pp. 2709–2713, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Lipton, N. J. Sucher, P. K. Kaiser, and E. B. Dreyer, “Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity,” Neuron, vol. 7, no. 1, pp. 111–118, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Louboutin, L. Agrawal, B. A. S. Reyes, E. J. Van Bockstaele, and D. S. Strayer, “Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors,” Gene Therapy, vol. 14, no. 23, pp. 1650–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Louboutin, B. A. S. Reyes, L. Agrawal, C. R. Maxwell, E. J. Van Bockstaele, and D. S. Strayer, “Blood-brain barrier abnormalities caused by exposure to HIV-1 gp120—protection by gene delivery of antioxidant enzymes,” Neurobiology of Disease, vol. 38, no. 2, pp. 313–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. Huang, M. Hunter, and V. C. Bond, “Effect of extracellular human immunodeficiency virus type 1 glycoprotein 120 on primary human vascular endothelial cell cultures,” AIDS Research and Human Retroviruses, vol. 15, no. 14, pp. 1265–1277, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. G. D. Kanmogne, C. Primeaux, and P. Grammas, “HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implications for the pathogenesis of HIV-associated dementia,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 6, pp. 498–505, 2005. View at Google Scholar · View at Scopus
  35. G. D. Kanmogne, K. Schall, J. Leibhart, B. Knipe, H. E. Gendelman, and Y. Persidsky, “HIV-1 gp120 compromises blood-brain barrier integrity and enhance monocyte migration across blood-brain barrier: implication for viral neuropathogenesis,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 1, pp. 123–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Ullrich, J. E. Groopman, and R. K. Ganju, “HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases,” Blood, vol. 96, no. 4, pp. 1438–1442, 2000. View at Google Scholar · View at Scopus
  37. T. O. Price, N. Ercal, R. Nakaoke, and W. A. Banks, “HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells,” Brain Research, vol. 1045, no. 1-2, pp. 57–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. I. M. Clark, T. E. Swingler, C. L. Sampieri, and D. R. Edwards, “The regulation of matrix metalloproteinases and their inhibitors,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 6-7, pp. 1362–1378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. V. W. Yong, C. Power, P. Forsyth, and D. R. Edwards, “Metalloproteinases in biology and pathology of the nervous system,” Nature Reviews Neuroscience, vol. 2, no. 7, pp. 502–511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Vaillant, M. Didier-Bazès, A. Hutter, M. F. Belin, and N. Thomasset, “Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum,” Journal of Neuroscience, vol. 19, no. 12, pp. 4994–5004, 1999. View at Google Scholar · View at Scopus
  41. A. Szklarczyk, J. Lapinska, M. Rylski, R. D. G. McKay, and L. Kaczmarek, “Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus,” Journal of Neuroscience, vol. 22, no. 3, pp. 920–930, 2002. View at Google Scholar · View at Scopus
  42. M. Asahi, K. Asahi, J. C. Jung, G. J. Del Zoppo, M. E. Fini, and E. H. Lo, “Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 12, pp. 1681–1689, 2000. View at Google Scholar · View at Scopus
  43. Y. Gasche, J. C. Copin, T. Sugawara, M. Fujimura, and P. H. Chan, “Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 12, pp. 1393–1400, 2001. View at Google Scholar · View at Scopus
  44. Y. Gursoy-Ozdemir, J. Qiu, N. Matsuoka et al., “Cortical spreading depression activates and upregulates MMP-9,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1447–1455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. G. W. Kim, Y. Gasche, S. Grzeschik, J. C. Copin, C. M. Maier, and P. H. Chan, “Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood-brain barrier disruption?” Journal of Neuroscience, vol. 23, no. 25, pp. 8733–8742, 2003. View at Google Scholar · View at Scopus
  46. G. A. Rosenberg, “Matrix metalloproteinases in neuroinflammation,” GLIA, vol. 39, no. 3, pp. 279–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. H. Lo, X. Wang, and M. Louise Cuzner, “Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases,” Journal of Neuroscience Research, vol. 69, no. 1, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Haorah, K. Schall, S. H. Ramirez, and Y. Persidsky, “Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associated with alcohol abuse,” GLIA, vol. 56, no. 1, pp. 78–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Rumbaugh and A. Nath, “Developments in HIV neuropathogenesis,” Current Pharmaceutical Design, vol. 12, no. 9, pp. 1023–1044, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. P. Louboutin, L. Agrawal, B. A. S. Reyes, E. J. Van Bockstaele, and D. S. Strayer, “HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 8, pp. 801–816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Morinville, C. M. Cahill, H. Aibak et al., “Morphine-induced changes in δ opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord,” Journal of Neuroscience, vol. 24, no. 24, pp. 5549–5559, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Bigini, F. Gardoni, S. Barbera et al., “Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice,” BMC Neuroscience, vol. 7, article 71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Gu, M. Kaul, B. Yan et al., “S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death,” Science, vol. 297, no. 5584, pp. 1186–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Conant, C. St Hillaire, C. Anderson, D. Galey, J. Wang, and A. Nath, “Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases,” Journal of NeuroVirology, vol. 10, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Toschi, G. Barillari, C. Sgadari et al., “Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 tat protein and basic fibroblast growth factor,” Molecular Biology of the Cell, vol. 12, no. 10, pp. 2934–2946, 2001. View at Google Scholar · View at Scopus
  56. D. C. L. Marshall, T. Wyss-Coray, and C. R. Abraham, “Induction of matrix metalloproteinase-2 in human immunodeficiency virus- 1 glycoprotein 120 transgenic mouse brains,” Neuroscience Letters, vol. 254, no. 2, pp. 97–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Russo, E. Siviglia, M. Gliozzi et al., “Evidence implicating matrix metalloproteinases in the mechanism underlying accumulation of IL-1β and neuronal apoptosis in the neocortex of HIV/gp120-exposed rats,” International Review of Neurobiology, vol. 82, pp. 407–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. N. E. J. Berman, J. K. Marcario, C. Yong et al., “Microglial activation and neurological symptoms in the SIV model of neuroAIDS: association of MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes,” Neurobiology of Disease, vol. 6, no. 6, pp. 486–498, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. S. I. Manabe, Z. Gu, and S. A. Lipton, “Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death,” Investigative Ophthalmology and Visual Science, vol. 46, no. 12, pp. 4747–4753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Sacktor, N. Haughey, R. Cutler et al., “Novel markers of oxidative stress in actively progressive HIV dementia,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 176–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. O. Price, F. Uras, W. A. Banks, and N. Ercal, “A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells,” Experimental Neurology, vol. 201, no. 1, pp. 193–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. D. S. Strayer, “Gene therapy using SV40-derived vectors: what does the future hold?” Journal of Cellular Physiology, vol. 181, no. 3, pp. 375–384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. D. S. Strayer, R. Kondo, J. Milano, and L. X. Duan, “Use of SV40-based vectors to transduce foreign genes to normal human peripheral blood mononuclear cells,” Gene Therapy, vol. 4, no. 3, pp. 219–225, 1997. View at Google Scholar · View at Scopus
  64. D. S. Strayer, M. Lamothe, D. Wei, J. Milano, and R. Kondo, “Generation of recombinant SV40 vectors for gene transfer. SV40 protocols,” in Methods in Molecular Biology, L. Raptis, Ed., vol. 165, pp. 103–117, Humana Press, Totowa, NJ, USA, 2001. View at Google Scholar
  65. H. J. McKee and D. S. Strayer, “Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector,” Vaccine, vol. 20, no. 29-30, pp. 3613–3625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. B. V. Sauter, B. Parashar, N. R. Chowdhury et al., “A replication-deficient rSV40 mediates liver-directed gene transfer and a long-term amelioration of jaundice in gunn rats,” Gastroenterology, vol. 119, no. 5, pp. 1348–1357, 2000. View at Publisher · View at Google Scholar
  67. J. P. Louboutin, B. A. S. Reyes, L. Agrawal, E. Van Bockstaele, and D. S. Strayer, “Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors,” Gene Therapy, vol. 14, no. 12, pp. 939–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. P. Louboutin, E. Marusich, J. Fisher-Perkins, J. P. Dufour, B. A. Bunnell, and D. S. Strayer, “Gene transfer to the rhesus monkey brain using SV40-derived vectors is durable and safe,” Gene Therapy, vol. 18, no. 7, pp. 682–691, 2011. View at Publisher · View at Google Scholar
  69. J. P. Louboutin, B. A. S. Reyes, L. Agrawal, E. J. Van Bockstaele, and D. S. Strayer, “HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes,” Experimental Neurology, vol. 221, no. 1, pp. 231–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. P. Louboutin, B. A. Reyes, L. Agrawal, E. J. Van Bockstaele, and D. S. Strayer, “Intracisternal rSV40 administration provides effective pan-CNS transgene expression,” Gene Therapy. In press. View at Publisher · View at Google Scholar
  71. M. F. Stins, Y. Shen, S. H. Huang, F. Gilles, V. K. Kalra, and K. S. Kim, “Gp120 activates children’s brain endothelial cells via CD4,” Journal of Neurovirology, vol. 7, no. 2, pp. 125–134, 2001. View at Publisher · View at Google Scholar
  72. Z. Ren, Q. Yao, and C. Chen, “HIV-1 envelope glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells,” Laboratory Investigation, vol. 82, no. 3, pp. 245–255, 2002. View at Google Scholar · View at Scopus
  73. M. F. Stins, D. Pearce, F. Di Cello, A. Erdreich-Epstein, C. A. Pardo, and K. S. Kim, “Induction of intercellular adhesion molecule-1 on human brain endothelial cells by HIV-1 gp120: role of CD4 and chemokine coreceptors,” Laboratory Investigation, vol. 83, no. 12, pp. 1787–1798, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. W. A. Banks, F. Ibrahimi, S. A. Farr, J. F. Flood, and J. E. Morley, “Effects of wheatgerm agglutinin and aging on the regional brain uptake of HIV-1GP120,” Life Sciences, vol. 65, no. 1, pp. 81–89, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. W. A. Banks, E. O. Freed, K. M. Wolf, S. M. Robinson, M. Franko, and V. B. Kumar, “Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope proteins and adsorptive endocytosis,” Journal of Virology, vol. 75, no. 10, pp. 4681–4691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. W. A. Banks, S. M. Robinson, and A. Nath, “Permeability of the blood-brain barrier to HIV-1 Tat,” Experimental Neurology, vol. 193, no. 1, pp. 218–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. E. A. Eugenin, K. Osiecki, L. Lopez, H. Goldstein, T. M. Calderon, and J. W. Berman, “CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS,” Journal of Neuroscience, vol. 26, no. 4, pp. 1098–1106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Z. Ho and S. D. Douglas, “Substance P and neurokinin-1 receptor modulation of HIV,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 48–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Vinet-Oliphant, X. Alvarez, E. Buza et al., “Neurokinin-1 receptor (NK1-R) expression in the brains of SIV-infected rhesus macaques: implications for substance P in NK1-R immune cell trafficking into the CNS,” American Journal of Pathology, vol. 177, no. 3, pp. 1286–1297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Huang, I. E. András, G. B. Rha, B. Hennig, and M. Toborek, “PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling,” The FASEB Journal, vol. 25, no. 11, pp. 3979–3988, 2011. View at Publisher · View at Google Scholar
  81. W. Huang, Y. E. Sung, I. E. András, B. Hennig, and M. Toborek, “PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities,” The FASEB Journal, vol. 23, no. 5, pp. 1596–1606, 2009. View at Publisher · View at Google Scholar · View at Scopus