Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 578251, 9 pages
Research Article

Daptomycin: Local Application in Implant-Associated Infection and Complicated Osteomyelitis

1Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Waldeyerstraße 1, 48149 Muenster, Germany
2Institute of Medical Microbiology, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Domagkstraße 10, 48149 Muenster, Germany
3Institute of Medical Physics and Biophysics, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Robert-Koch-Straße 31, 48149 Muenster, Germany

Received 10 February 2012; Accepted 2 April 2012

Academic Editors: G. J. Hooper, D. P. Levine, and M. M. Petersen

Copyright © 2012 Steffen B. Rosslenbroich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. The rise of highly resistant bacteria creates a persistent urge to develop new antimicrobial agents. This paper investigates the application of the lipopeptide antibiotic daptomycin in infections involving the human bone. Methods. Compressive and tensile strength testing of daptomycin-laden PMMA was performed referring to the ISO 5833. The microstructure of the antibiotic-laden PMMA was evaluated by scanning electron microscopy. Intracellular activity of daptomycin was determined by a human osteoblast infection model. Elution kinetics of the antibiotic-laden bone cement was measured by using a continuous flow chamber setup. Results. There was no significant negative effect of adding 1.225% and 7.5% per weight of daptomycin to the PMMA. There was no significant difference in intracellular activity comparing gentamicin to daptomycin. Elution of daptomycin from PMMA showed within the first-hour initial peak values of 15–20 μg/mL. Conclusion. Daptomycin has a certain degree of activity in the intracellular environment of osteoblasts. Daptomycin admixed to PMMA remains bactericidal and does not significantly impair structural characteristics of the PMMA. The results of this paper suggest that daptomycin might be a potent alternative for treating osteomyelitis and implant-associated infection in trauma and orthopedic surgery caused by multiresistant strains.