Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 578251, 9 pages
http://dx.doi.org/10.1100/2012/578251
Research Article

Daptomycin: Local Application in Implant-Associated Infection and Complicated Osteomyelitis

1Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Waldeyerstraße 1, 48149 Muenster, Germany
2Institute of Medical Microbiology, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Domagkstraße 10, 48149 Muenster, Germany
3Institute of Medical Physics and Biophysics, University Hospital Muenster, Westfalian-Wilhelm's-University Muenster, Robert-Koch-Straße 31, 48149 Muenster, Germany

Received 10 February 2012; Accepted 2 April 2012

Academic Editors: G. J. Hooper, D. P. Levine, and M. M. Petersen

Copyright © 2012 Steffen B. Rosslenbroich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Kuechle, G. C. Landon, D. M. Musher, and P. C. Noble, “Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement,” Clinical Orthopaedics and Related Research, no. 264, pp. 302–308, 1991. View at Google Scholar · View at Scopus
  2. J. E. Phillips, T. P. Crane, M. Noy, T. S. J. Elliott, and R. J. Grimer, “The incidence of deep prosthetic infections in a specialist orthopaedic hospital. A 15-year prospective survey,” Journal of Bone and Joint Surgery B, vol. 88, no. 7, pp. 943–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Trampuz and W. Zimmerli, “Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment,” Drugs, vol. 66, no. 8, pp. 1089–1105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. T. Tsukayama, “Pathophysiology of posttraumatic osteomyelitis,” Clinical Orthopaedics and Related Research, no. 360, pp. 22–29, 1999. View at Google Scholar · View at Scopus
  5. J. Ciampolini and K. G. Harding, “Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often?” Postgraduate Medical Journal, vol. 76, no. 898, pp. 479–483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Ellington, M. Harris, M. C. Hudson, S. Vishin, L. X. Webb, and R. Sherertz, “Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis,” Journal of Orthopaedic Research, vol. 24, no. 1, pp. 87–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Hornberg, A. Koller, W. Bühring, H. Bösenberg, and H. H. Wetz, “Methicillin-resistant Staphylococcus aureus (MRSA). Actual situation and importance of infection prevention in technical orthopedics,” Orthopade, vol. 30, no. 4, pp. 231–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Trampuz and A. F. Widmer, “Infections associated with orthopedic implants,” Current Opinion in Infectious Diseases, vol. 19, no. 4, pp. 349–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Chang and K. Merritt, “Infection at the site of implanted materials with and without preadhered bacteria,” Journal of Orthopaedic Research, vol. 12, no. 4, pp. 526–531, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Lew and F. A. Waldvogel, “Current concepts: osteomyelitis,” The New England Journal of Medicine, vol. 336, no. 14, pp. 999–1007, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. F. A. Waldvogel, G. Medoff, and M. N. Swartz, “Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects (second of three parts),” The New England Journal of Medicine, vol. 282, no. 5, pp. 260–266, 1970. View at Google Scholar · View at Scopus
  12. R. M. Donlan, “Biofilms: microbial life on surfaces,” Emerging Infectious Diseases, vol. 8, no. 9, pp. 881–890, 2002. View at Google Scholar · View at Scopus
  13. P. S. Stewart and J. W. Costerton, “Antibiotic resistance of bacteria in biofilms,” The Lancet, vol. 358, no. 9276, pp. 135–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. K. Ellington, S. S. Reilly, W. K. Ramp, M. S. Smeltzer, J. F. Kellam, and M. C. Hudson, “Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts,” Microbial Pathogenesis, vol. 26, no. 6, pp. 317–323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Hudson, W. K. Ramp, N. C. Nicholson, A. S. Williams, and M. T. Nousiainen, “Internalization of Staphylococcus aureus by cultured osteoblasts,” Microbial Pathogenesis, vol. 19, no. 6, pp. 409–419, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Jevon, C. Guo, B. Ma et al., “Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts,” Infection and Immunity, vol. 67, no. 5, pp. 2677–2681, 1999. View at Google Scholar · View at Scopus
  17. S. S. Reilly, M. C. Hudson, J. F. Kellam, and W. K. Ramp, “In vivo internalization of Staphylococcus aureus by embryonic chick osteoblasts,” Bone, vol. 26, no. 1, pp. 63–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. K. A. Rodvold, M. H. Gotfried, M. Cwik, J. M. Korth-Bradley, G. Dukart, and E. J. Ellis-Grosse, “Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose,” Journal of Antimicrobial Chemotherapy, vol. 58, no. 6, pp. 1221–1229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Raschke and G. Schmidmaier, “Biological coating of implants in trauma and orthopedic surgery,” Unfallchirurg, vol. 107, no. 8, pp. 653–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. C. Richelsoph, N. D. Webb, and W. O. Haggard, “Elution behavior of daptomycin-loaded calcium sulfate pellets: a preliminary study,” Clinical Orthopaedics and Related Research, no. 461, pp. 68–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Rouse, K. E. Piper, M. Jacobson, D. J. Jacofsky, J. M. Steckelberg, and R. Patel, “Daptomycin treatment of Staphylococcus aureus experimental chronic osteomyelitis,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 2, pp. 301–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Schmidmaier, M. Lucke, B. Wildemann, N. P. Haas, and M. Raschke, “Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review,” Injury, vol. 37, no. 2, pp. S105–S112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Anguita-Alonso, A. D. Hanssen, D. R. Osmon, A. Trampuz, J. M. Steckelberg, and R. Patel, “High rate of aminoglycoside resistance among staphylococci causing prosthetic joint infection,” Clinical Orthopaedics and Related Research, no. 439, pp. 43–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. D. Hanssen and M. J. Spangehl, “Practical applications of antibiotic-loaded bone cement for treatment of infected joint replacements,” Clinical Orthopaedics and Related Research, no. 427, pp. 79–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Tunney, N. Dunne, G. Einarsson, A. McDowell, A. Kerr, and S. Patrick, “Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis,” Journal of Orthopaedic Research, vol. 25, no. 1, pp. 2–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. E. Hendriks, D. Neut, J. R. van Horn, H. C. van der Mei, and H. J. Busscher, “Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements,” Journal of Bone and Joint Surgery B, vol. 87, no. 2, pp. 272–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. van de Belt, D. Neut, W. Schenk, J. R. van Horn, H. C. van der Mei, and H. J. Busscher, “Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements,” Biomaterials, vol. 22, no. 12, pp. 1607–1611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. H. F. Chambers, “The changing epidemiology of staphylococcus aureus?” Emerging Infectious Diseases, vol. 7, no. 2, pp. 178–182, 2001. View at Google Scholar · View at Scopus
  29. G. L. French, “Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin,” Journal of Antimicrobial Chemotherapy, vol. 58, no. 6, pp. 1107–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Diekema, M. A. Pfaller, F. J. Schmitz et al., “Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999,” Clinical Infectious Diseases, vol. 32, no. 10, pp. S114–S132, 2001. View at Google Scholar · View at Scopus
  31. R. L. Akins and K. K. Haase, “Gram-positive resistance: pathogens, implications, and treatment options. Insights from the society of infectious diseases pharmacists,” Pharmacotherapy, vol. 25, no. 7, pp. 1001–1010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. C. Appelbaum, “The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus,” Clinical Microbiology and Infection, vol. 12, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Salzer, “Antimicrobial-resistant gram-positive bacteria in PD peritonitis and the newer antibiotics used to treat them,” Peritoneal Dialysis International, vol. 25, no. 4, pp. 313–319, 2005. View at Google Scholar · View at Scopus
  34. R. L. Akins and M. J. Rybak, “Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 2, pp. 454–459, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. F. B. Oleson Jr., C. L. Berman, J. B. Kirkpatrick, K. S. Regan, J. J. Lai, and F. P. Tally, “Once-daily dosing in dogs optimizes daptomycin safety,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 11, pp. 2948–2953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Silverman, N. G. Perlmutter, and H. M. Shapiro, “Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 8, pp. 2538–2544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. K. V. I. Rolston, J. Segreti, K. C. Lamp, and L. V. Friedrich, “Cubicin outcomes registry and experience (CORE) methodology,” The American Journal of Medicine, vol. 120, no. 10, pp. S4–S5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. A. Schriever, C. Fernández, K. A. Rodvold, and L. H. Danziger, “Daptomycin: a novel cyclic lipopeptide antimicrobial,” American Journal of Health-System Pharmacy, vol. 62, no. 11, pp. 1145–1158, 2005. View at Google Scholar · View at Scopus
  39. J. N. Steenbergen, J. Alder, G. M. Thorne, and F. P. Tally, “Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections,” Journal of Antimicrobial Chemotherapy, vol. 55, no. 3, pp. 283–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Muthaiyan, J. A. Silverman, R. K. Jayaswal, and B. J. Wilkinson, “Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 3, pp. 980–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. Falagas, K. P. Giannopoulou, F. Ntziora, and P. J. Papagelopoulos, “Daptomycin for treatment of patients with bone and joint infections: a systematic review of the clinical evidence,” International Journal of Antimicrobial Agents, vol. 30, no. 3, pp. 202–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Finney, C. W. Crank, and J. Segreti, “Use of daptomycin to treat drug-resistant Gram-positive bone and joint infections,” Current Medical Research and Opinion, vol. 21, no. 12, article 3172, pp. 1923–1926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. J. T. Mader and K. Adams, “Comparative evaluation of daptomycin (LY146032) and vancomycin in the treatment of experimental methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits,” Antimicrobial Agents and Chemotherapy, vol. 33, no. 5, pp. 689–692, 1989. View at Google Scholar · View at Scopus
  44. C. E. Edmiston Jr., M. P. Goheen, G. R. Seabrook et al., “Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices,” The American Journal of Surgery, vol. 192, no. 3, pp. 344–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. K. C. Lamp, L. V. Friedrich, L. Mendez-Vigo, and R. Russo, “Clinical experience with daptomycin for the treatment of patients with osteomyelitis,” The American Journal of Medicine, vol. 120, no. 10, pp. S13–S20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Roveta, A. Marchese, and G. C. Schito, “Activity of daptomycin on biofilms produced on a plastic support by Staphylococcus spp.,” International Journal of Antimicrobial Agents, vol. 31, no. 4, pp. 321–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Lemaire, F. van Bambeke, M. P. Mingeot-Leclercq, and P. M. Tulkens, “Modulation of the cellular accumulation and intracellular activity of daptomycin towards phagocytized Staphylococcus aureus by the P-glycoprotein (MDR1) efflux transporter in human THP-1 macrophages and madin-darby canine kidney cells,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 8, pp. 2748–2757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. P. van der Auwera, G. Petrikkos, T. Matsumoto, and M. Husson, “Influence of LY146032 on human polymorphonuclear leucocytes in vitro,” Journal of Antimicrobial Chemotherapy, vol. 21, no. 1, pp. 57–63, 1988. View at Google Scholar · View at Scopus
  49. B. Haslinger-Löffler, B. C. Kahl, M. Grundmeier et al., “Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells,” Cellular Microbiology, vol. 7, no. 8, pp. 1087–1097, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. International-Organization-for-Standardization, Implants of Surgery—Acrylic Resin Cements, 2002.
  51. A. C. Perry, M. S. Rouse, Y. Khaliq et al., “Antimicrobial release kinetics from polymethylmethacrylate in a novel continuous flow chamber,” Clinical Orthopaedics and Related Research, no. 403, pp. 49–53, 2002. View at Google Scholar · View at Scopus
  52. E. W. Hall, M. S. Rouse, D. J. Jacofsky et al., “Release of daptomycin from polymethylmethacrylate beads in a continuous flow chamber,” Diagnostic Microbiology and Infectious Disease, vol. 50, no. 4, pp. 261–265, 2004. View at Publisher · View at Google Scholar · View at Scopus