Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 691413, 6 pages
http://dx.doi.org/10.1100/2012/691413
Research Article

A Fast and Efficient Adaptive Threshold Rate Control Scheme for Remote Sensing Images

1Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China
2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received 27 August 2012; Accepted 1 November 2012

Academic Editors: O. Hadar and M. Strojnik

Copyright © 2012 Xiao Chen and Xiaoqing Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. González-Conejero, J. Bartrina-Rapesta, and J. Serra-Sagristà, “JPEG2000 encoding of remote sensing multispectral images with no-data regions,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 251–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Li, R. Yang, and H. Jiang, “Remote-sensing image compression using two-dimensional oriented wavelet transform,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 236–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Napoleon, S. Sathya, M. Praneesh, and M. Siva, “Remote sensing image compression using 3D-oriented wavelet transform,” International Journal of Computer Applications, vol. 45, no. 24, pp. 53–61, 2012. View at Google Scholar
  4. D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen, “Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 3, pp. 219–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. An and Z. Cai, “Efficient rate control for lossless mode of JPEG2000,” IEEE Signal Processing Letters, vol. 15, pp. 409–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Masuzaki, H. Tsutsui, T. Izumi, T. Onoye, and Y. Nakamura, “JPEG2000 adaptive rate control for embedded systems,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 333–336, May 2002. View at Scopus
  8. Q. H. Li, Y. Y. Zhang, G. Q. Ren, Q. Z. Wu, and W. J. Han, “A new rate adaptive control algorithm for JPEG2000,” in Proceedings of the 2nd International Conference on Multimedia Information Networking and Security (MINES '10), pp. 23–27, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. N. Vikram, V. Vasudevan, and S. Srinivasan, “Rate-distortion estimation for fast JPEG2000 compression at low bit-rates,” Electronics Letters, vol. 41, no. 1, pp. 16–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kim, H. M. Kim, P. S. Tsai, and T. Acharya, “Memory efficient progressive rate-distortion algorithm for JPEG 2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 1, pp. 181–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Yu, F. Sun, and J. E. Fritts, “Efficient rate control for JPEG-2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 5, pp. 577–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. M. Yeung and O. C. Au, “Efficient rate control for JPEG2000 image coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 3, pp. 335–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Adams, “The jasper project home page,” http://www.ece.uvic.ca/~frodo/jasper/.