Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 721313, 5 pages
Clinical Study

Correlation of Dynamic PET and Gene Array Data in Patients with Gastrointestinal Stromal Tumors

1Medical PET Group, Biological Imaging, CCU Nuclear Medicine, German Cancer Research Center, 69120 Heidelberg, Germany
2Molecular Immunology Group, Institute of Immunology, University of Rostock, 18055 Rostock, Germany
3Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, Mannheim University Medical Center, University of Heidelberg, 69135 Mannheim, Germany

Received 13 March 2012; Accepted 29 March 2012

Academic Editors: P. Hartvig, T. Momose, and L. Roncucci

Copyright © 2012 Ludwig G. Strauss et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Introduction. The results obtained with dynamic PET (dPET) were compared to gene expression data obtained in patients with gastrointestinal stromal tumors (GIST). The primary aim was to assess the association of the dPET results and gene expression data. Material and Methods. dPET was performed following the injection of F-18-fluorodeoxyglucose (FDG) in 22 patients with GIST. All patients were examined prior to surgery for staging purpose. Compartment and noncompartment models were used for the quantitative evaluation of the dPET examinations. Gene array data were based on tumor specimen obtained by surgery after the PET examinations. Results. The data analysis revealed significant correlations for the dPET parameters and the expression of zinc finger genes (znf43, znf85, znf91, znf189). Furthermore, the transport of FDG (k1) was associated with VEGF-A. The cell cycle gene cyclin-dependent kinase inhibitor 1C was correlated with the maximum tracer uptake (SUVmax) in the tumors. Conclusions. The data demonstrate a dependency of the tracer kinetics on genes associated with prognosis in GIST. Furthermore, angiogenesis and cell proliferation have an impact on the tracer uptake.