Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 723654, 6 pages
Research Article

Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931) Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

1Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Boulevard. L.D. Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Hermosillo, Sonora, 83000, Mexico
2Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a La Victoria Km. 0.6, Hermosillo, Sonora, 83304, Mexico
3Centro de Estudios Superiores del Estado de Sonora, Carretera a Huatabampo y Periférico Sur, Navojoa, Sonora, 85870, Mexico
4Centro de Investigaciones Biológicas del Noroeste, Guaymas, 85454 Sonora, Mexico

Received 10 October 2011; Accepted 2 January 2012

Academic Editor: Hinrich Gronemeyer

Copyright © 2012 Manuel J. Becerra-Dórame et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control), an autotrophic system (AS) based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS) based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.