Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 737526, 9 pages
http://dx.doi.org/10.1100/2012/737526
Research Article

Development and Validation of an RP-HPLC Method for CB13 Evaluation in Several PLGA Nanoparticle Systems

Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, C/Profesor García González, 41012 Seville, Spain

Received 27 February 2012; Accepted 9 April 2012

Academic Editors: N. Dessalew, T. Hatano, and A. N. Zaid

Copyright © 2012 J. Álvarez-Fuentes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices,” Journal of Controlled Release, vol. 70, no. 1-2, pp. 1–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Suri, H. Fenniri, and B. Singh, “Nanotechnology-based drug delivery systems,” Journal of Occupational Medicine and Toxicology, vol. 2, no. 1, article 16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Kumar, D. Depan, N. Singh Tomer, and R. P. Singh, “Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives,” Progress in Polymer Science, vol. 34, no. 6, pp. 479–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. G. Pertwee, “Cannabinoid receptors and pain,” Progress in Neurobiology, vol. 63, no. 5, pp. 569–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Attal, L. Brasseur, D. Guirimand, S. Clermond-Gnamien, S. Atlami, and D. Bouhassira, “Are oral cannabinoids safe and effective in refractory neuropathic pain?” European Journal of Pain, vol. 8, no. 2, pp. 173–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. K. Dziadulewicz, S. J. Bevan, C. T. Brain et al., “Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration,” Journal of Medicinal Chemistry, vol. 50, no. 16, pp. 3851–3856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gardin, K. Kucher, B. Kiese, and S. Appel-Dingemanse, “Cannabinoid receptor agonist 13, a novel cannabinoid agonist: first in human pharmacokinetics and safety,” Drug Metabolism and Disposition, vol. 37, no. 4, pp. 827–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Butcher, “Target discovery and validation in the post-genomic era,” Neurochemical Research, vol. 28, no. 2, pp. 367–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. D. Patil, D. G. Rhodes, and D. J. Burgess, “DNA-based therapeutics and DNA delivery systems: a comprehensive review,” AAPS Journal, vol. 7, no. 1, article 9, pp. E61–E77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Schoubben, P. Blasi, S. Giovagnoli, L. Perioli, C. Rossi, and M. Ricci, “Novel composite microparticles for protein stabilization and delivery,” European Journal of Pharmaceutical Sciences, vol. 36, no. 2-3, pp. 226–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hamishehkar, J. Emami, A. R. Najafabadi et al., “The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method,” Colloids and Surfaces B, vol. 74, no. 1, pp. 340–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Jain, “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices,” Biomaterials, vol. 21, no. 23, pp. 2475–2490, 2000. View at Google Scholar · View at Scopus
  13. M. A. Holgado, J. L. Arias, M. J. Cózar, J. Alvarez-Fuentes, A. M. Gañán-Calvo, and M. Fernández-Arévalo, “Synthesis of lidocaine-loaded PLGA microparticles by flow focusing. Effects on drug loading and release properties,” International Journal of Pharmaceutics, vol. 358, no. 1-2, pp. 27–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Fessi, F. Piusieux, J. P. Devissaguet, N. Ammoury, and S. Benita, “Nanocapsule formation by interfacial polymer deposition following solvent displacement,” International Journal of Pharmaceutics, vol. 55, no. 1, pp. R1–R4, 1989. View at Google Scholar · View at Scopus
  15. M. Sergi, E. Bafile, D. Compagnone, R. Curini, G. D'ascenzo, and F. S. Romolo, “Multiclass analysis of illicit drugs in plasma and oral fluids by LC-MS/MS,” Analytical and Bioanalytical Chemistry, vol. 393, no. 2, pp. 709–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Mercolini, A. Musenga, I. Comin, C. Baccini, M. Conti, and M. A. Raggi, “Determination of plasma and urine levels of Δ9-tetrahydrocannabinol and its main metabolite by liquid chromatography after solid-phase extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 1, pp. 156–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Abbara, R. Galy, A. Benyamina, M. Reynaud, and L. Bonhomme-Faivre, “Development and validation of a method for the quantitation of Δ9 tetrahydrocannabinol in human plasma by high performance liquid chromatography after solid-phase extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 3, pp. 1011–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. T. Fischedick, R. Glas, A. Hazekamp, and R. Verpoorte, “A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L.,” Phytochemical Analysis, vol. 20, no. 5, pp. 421–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Vollner, D. Bieniek, and F. Korte, “Review of analytical methods for identification and quantification of cannabis products,” Regulatory Toxicology and Pharmacology, vol. 6, no. 4, pp. 348–358, 1986. View at Google Scholar · View at Scopus
  20. M. A. Holgado, M. J. Cózar-Bernal, S. Salas, J. L. Arias, J. Álvarez-Fuentes, and M. Fernández-Arévalo, “Protein-loaded PLGA microparticles engineered by flow focusing: physicochemical characterization and protein detection by reversed-phase HPLC,” International Journal of Pharmaceutics, vol. 380, no. 1-2, pp. 147–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Salas, B. Talero, A. M. Rabasco, and M. L. González-Rodríguez, “Development and validation of a reverse-phase liquid chromatographic method for the assay of lidocaine hydrochloride in alginate-Gantrez microspheres,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 3, pp. 501–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Teixeira, C. M. M. Afonso, M. M. M. M. Pinto, and C. M. Barbosa, “A validated HPLC method for the assay of xanthone and 3-methoxyxanthone in PLGA nanocapsules,” Journal of Chromatographic Science, vol. 41, no. 7, pp. 371–376, 2003. View at Google Scholar · View at Scopus
  23. “ICH-Q2B validation of analytical procedures,” in Proceedings of the Methodology International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1996.
  24. ICH Harmonised Tripartite Guideline, “Validation of analytical procedures: text and methodology-Q2(R1),” 2005. View at Google Scholar
  25. A. S. Lister, “Validation of HPLC methods in pharmaceutical analysis,” Separation Science and Technology, vol. 6, no. C, pp. 191–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. das Neves, B. Sarmento, M. M. Amiji, and M. F. Bahia, “Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles,” Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 2, pp. 167–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. P. D. Marcato and N. Durán, “New aspects of nanopharmaceutical delivery systems,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 5, pp. 2216–2229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Chen, C. Khemtong, X. Yang, X. Chang, and J. Gao, “Nanonization strategies for poorly water-soluble drugs,” Drug Discovery Today, vol. 16, no. 7-8, pp. 354–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Cózar-Bernal, M. A. Holgado, J. L. Arias et al., “Insulin-loaded PLGA microparticles: flow focusing versus double emulsion/solvent evaporation,” Journal of Microencapsulation, vol. 28, no. 5, pp. 430–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Martín-Banderas, A. Rodríguez-Gil, A. Cebolla et al., “Towards high-throughput production of uniformly encoded microparticles,” Advanced Materials, vol. 18, no. 5, pp. 559–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Gañán-Calvo, L. Martín-Banderas, R. González-Prieto et al., “Straightforward production of encoded microbeads by Flow Focusing: potential applications for biomolecule detection,” International Journal of Pharmaceutics, vol. 324, no. 1, pp. 19–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Fessi, F. Piusieux, J. P. Devissaguet, N. Ammoury, and S. Benita, “Nanocapsule formation by interfacial polymer deposition following solvent displacement,” International Journal of Pharmaceutics, vol. 55, no. 1, pp. R1–R4, 1989. View at Google Scholar · View at Scopus
  33. “Guidelines for Collaborative Study procedure to validate characteristics of a method of analysis,” Journal Association of Official Analytical Chemists, vol. 72, pp. 694–704, 1989.
  34. J. M. Green, “Doing a thorough method validation can be tedious, but the consequences of not doing it right are wasted time, money, and resources,” Analytical Chemistry, vol. 68, pp. 305A–309A, 1996. View at Google Scholar
  35. N. A. Épshtein, “Limit of quantitation estimated with allowance for reproducibility requirements,” Pharmaceutical Chemistry Journal, vol. 36, no. 11, pp. 631–633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. LoBrutto and T. Patel, “Method validation,” in HPLC for Pharmaceutical Scientists, Y. V. Kazakevich and R. LoBrutto, Eds., John Wiley & Sons, Hoboken, NJ, USA, 2007. View at Google Scholar
  37. L. Martín-Banderas, M. Flores-Masquera, P. Riesco-Chueca et al., “Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles,” Small, vol. 1, no. 7, pp. 688–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Martín-Banderas, A. M. Gañán-Calvo, and M. Fernández-Arévalo, “Making drops in microencapsulation processes,” Letters in Drug Design and Discovery, vol. 7, no. 4, pp. 300–309, 2010. View at Google Scholar · View at Scopus
  39. E. Cohen-Sela, S. Teitlboim, M. Chorny et al., “Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity,” Journal of Pharmaceutical Sciences, vol. 98, no. 4, pp. 1452–1462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Gañán-Calvo, “Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams,” Physical Review Letters, vol. 80, no. 2, pp. 285–288, 1998. View at Google Scholar · View at Scopus
  41. H. Xie and J. W. Smith, “Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system,” Journal of Nanobiotechnology, vol. 8, article 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Gaumet, R. Gurny, and F. Delie, “Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity,” International Journal of Pharmaceutics, vol. 390, no. 1, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Berkland, K. Kim, and D. W. Pack, “PLG microsphere size controls drug release rate through several competing factors,” Pharmaceutical Research, vol. 20, no. 7, pp. 1055–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus