Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 758512, 11 pages
http://dx.doi.org/10.1100/2012/758512
Review Article

The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

1Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
2Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
3Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2G3

Received 28 February 2012; Accepted 29 March 2012

Academic Editors: A. Aronheim, L. Berghella, M. Bouche, R. D. Byrne, and S. Mañes

Copyright © 2012 Mariusz Z. Ratajczak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Nagasawa, “A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis,” International Journal of Hematology, vol. 72, no. 4, pp. 408–411, 2000. View at Google Scholar · View at Scopus
  2. T. Ara, K. Tokoyoda, T. Sugiyama, T. Egawa, K. Kawabata, and T. Nagasawa, “Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny,” Immunity, vol. 19, no. 2, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Lapidot, A. Dar, and O. Kollet, “How do stem cells find their way home?” Blood, vol. 106, no. 6, pp. 1901–1910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Lapidot, “Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice: the role of SDF-1/CXCR4 interactions,” Annals of the New York Academy of Sciences, vol. 938, pp. 83–95, 2001. View at Google Scholar · View at Scopus
  5. Y. Vagima, K. Lapid, O. Kollet et al., “Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis,” Methods in Molecular Biology, vol. 750, no. 6, pp. 277–289, 2011. View at Google Scholar
  6. Q. Ma, D. Jones, and T. A. Springer, “The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment,” Immunity, vol. 10, no. 4, pp. 463–471, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. K. W. Christopherson, G. Hangoc, C. R. Mantel, and H. E. Broxmeyer, “Modulation of hematopoietic stem cell homing and engraftment by CD26,” Science, vol. 305, no. 5686, pp. 1000–1003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Onai, Y. Y. Zhang, H. Yoneyama, T. Kitamura, S. Ishikawa, and K. Matsushima, “Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine,” Blood, vol. 96, no. 6, pp. 2074–2080, 2000. View at Google Scholar · View at Scopus
  9. C. H. Kim, W. Wu, M. Wysoczynski et al., “Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors,” Leukemia, vol. 26, no. 1, pp. 106–116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Hänel, P. Andréani, and M. H. Gräler, “Erythrocytes store and release sphingosine 1-phosphate in blood,” FASEB Journal, vol. 21, no. 4, pp. 1202–1209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Seitz, A. M. Boehmler, L. Kanz, and R. Möhle, “The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells,” Annals of the New York Academy of Sciences, vol. 1044, pp. 84–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Z. Ratajczak, H. Lee, M. Wysoczynski et al., “Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex,” Leukemia, vol. 24, no. 5, pp. 976–985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. H. Granado, P. Gangoiti, A. Ouro et al., “Ceramide 1-phosphate (C1P) promotes cell migration. Involvement of a specific C1P receptor,” Cellular Signalling, vol. 21, no. 3, pp. 405–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Arana, P. Gangoiti, A. Ouro, M. Trueba, and A. Gámez-Mũoz, “Ceramide and ceramide 1-phosphate in health and disease,” Lipids in Health and Disease, vol. 9, article no. 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. Lemoli, D. Ferrari, M. Fogli et al., “Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo,” Blood, vol. 104, no. 6, pp. 1662–1670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Rossi, R. Manfredini, F. Bertolini et al., “The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration,” Blood, vol. 109, no. 2, pp. 533–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kronlage, J. Song, L. Sorokin et al., “Autocrine purinergic receptor signaling is essential for macrophage chemotaxis,” Science Signaling, vol. 3, no. 132, p. ra55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Z. Ratajczak, R. Reca, M. Wysoczynski et al., “Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells,” Leukemia, vol. 18, no. 9, pp. 1482–1490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. M. Lee, W. Wu, M. Wysoczynski et al., “Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes,” Leukemia, vol. 23, no. 11, pp. 2052–2062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Wu, C. H. Kim, R. Liu et al., “The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation,” Leukemia, vol. 26, no. 4, pp. 736–745, 2012. View at Publisher · View at Google Scholar
  21. R. I. Lehrer, “Primate defensins,” Nature Reviews Microbiology, vol. 2, no. 9, pp. 727–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Goichberg, A. Kalinkovich, N. Borodovsky et al., “cAMP-induced PKCδ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors,” Blood, vol. 107, no. 3, pp. 870–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Hoggatt and L. M. Pelus, “Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking,” Leukemia, vol. 24, no. 12, pp. 1993–2002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hoggatt, P. Singh, J. Sampath, and L. M. Pelus, “Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation,” Blood, vol. 113, no. 22, pp. 5444–5455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Lévesque, F. M. Helwani, and I. G. Winkler, “The endosteal osteoblastic niche and its role in hematopoietic stem cell homing and mobilization,” Leukemia, vol. 24, no. 12, pp. 1979–1992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Z. Ratajczak, “Spotlight series on stem cell mobilization: many hands on the ball, but who is the quarterback,” Leukemia, vol. 24, no. 10, pp. 1665–1666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Z. Ratajczak, C. H. Kim, A. Abdel-Latif et al., “Novel perspective on stem cell and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients,” Leukemia, vol. 26, no. 1, pp. 63–72, 2012. View at Google Scholar
  28. M. H. Baron, “Embryonic origins of mammalian hematopoiesis,” Experimental Hematology, vol. 31, no. 12, pp. 1160–1169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Weissman, V. Papaioannou, and R. Gardner, “Fetal hematopoietic origins of the adult hemolymphoid system,” in Differentiation of Normal and Neoplastic Cells, B. Clarkson, P. Mark, and J. Till, Eds., pp. 33–47, Cold Spring Harbor Lab. Press, New York, NY, USA, 1978. View at Google Scholar
  30. C. T. Lux, M. Yoshimoto, K. McGrath, S. J. Conway, J. Palis, and M. C. Yoder, “All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac,” Blood, vol. 111, no. 7, pp. 3435–3438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Adamo, O. Naveiras, P. L. Wenzel et al., “Biomechanical forces promote embryonic haematopoiesis,” Nature, vol. 459, no. 7250, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. I. Mascarenhas, A. Parker, E. Dzierzak, and K. Ottersbach, “Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling,” Blood, vol. 114, no. 21, pp. 4645–4653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Godin, J. A. Garcia-Porrero, F. Dieterlen-Lièvre, and A. Cumano, “Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites,” Journal of Experimental Medicine, vol. 190, no. 1, pp. 43–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Morrison, H. D. Hemmati, A. M. Wandycz, and I. L. Weissman, “The purification and characterization of fetal liver hematopoietic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 22, pp. 10302–10306, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Ara, Y. Nakamura, T. Egawa et al., “Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1),” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5319–5323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Ara, M. Itoi, K. Kawabata et al., “A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo,” Journal of Immunology, vol. 170, no. 9, pp. 4649–4655, 2003. View at Google Scholar · View at Scopus
  37. T. Nagasawa, S. Hirota, K. Tachibana et al., “Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1,” Nature, vol. 382, no. 6592, pp. 635–638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Tachibana, S. Hirota, H. Iizasa et al., “The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract,” Nature, vol. 393, no. 6685, pp. 591–594, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. R. Zou, A. H. Kottman, M. Kuroda, I. Taniuchi, and D. R. Littman, “Function of the chemokine receptor CXCR4 in heaematopolesis and in cerebellar development,” Nature, vol. 393, no. 6685, pp. 595–599, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Ma, D. Jones, P. R. Borghesani et al., “Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9448–9453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Foudi, P. Jarrier, Y. Zhang et al., “Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4-/- chimeric mice,” Blood, vol. 107, no. 6, pp. 2243–2251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kawabata, M. Ujikawa, T. Egawa et al., “A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5663–5667, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. M. P. Rettig, G. Ansstas, and J. F. Dipersio, “Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4,” Leukemia, vol. 26, no. 1, pp. 34–53, 2012. View at Google Scholar
  44. H. Fyrst and J. D. Saba, “Sphingosine-1-phosphate lyase in development and disease: Sphingolipid metabolism takes flight,” Biochimica et Biophysica Acta, vol. 1781, no. 9, pp. 448–458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Meng and V. M. Lee, “Differential expression of sphingosine-1-phosphate receptors 1–5 in the developing nervous system,” Developmental Dynamics, vol. 238, no. 2, pp. 487–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Nie, Y. C. Han, and Y. R. Zou, “CXCR4 is required for the quiescence of primitive hematopoietic cells,” Journal of Experimental Medicine, vol. 205, no. 4, pp. 777–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Peled, V. Grabovsky, L. Habler et al., “The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow,” Journal of Clinical Investigation, vol. 104, no. 9, pp. 1199–1211, 1999. View at Google Scholar · View at Scopus
  48. J. P. Lévesque, Y. Takamatsu, S. K. Nilsson, D. N. Haylock, and P. J. Simmons, “Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor,” Blood, vol. 98, no. 5, pp. 1289–1297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. L. Doan and J. P. Chute, “The vascular niche: home for normal and malignant hematopoietic stem cells,” Leukemia, vol. 26, no. 1, pp. 54–62, 2012. View at Google Scholar
  50. L. E. Purton and D. T. Scadden, “The hematopoietic stem cell niche,” StemBook, 2008. View at Google Scholar
  51. T. Sugiyama, H. Kohara, M. Noda, and T. Nagasawa, “Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches,” Immunity, vol. 25, no. 6, pp. 977–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Méndez-Ferrer, T. V. Michurina, F. Ferraro et al., “Mesenchymal and haematopoietic stem cells form a unique bone marrow niche,” Nature, vol. 466, no. 7308, pp. 829–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan et al., “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1,” Nature Medicine, vol. 10, no. 8, pp. 858–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. G. A. McQuibban, G. S. Butler, J. H. Gong et al., “Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43503–43508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Reca, D. Mastellos, M. Majka et al., “Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1,” Blood, vol. 101, no. 10, pp. 3784–3793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Z. Ratajczak, C. H. Kim, W. Wojakowski, A. Janowska-Wieczorek, M. Kucia, and J. Ratajczak, “Innate immunity as orchestrator of stem cell mobilization,” Leukemia, vol. 24, no. 10, pp. 1667–1675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Lambris, D. Ricklin, and B. V. Geisbrecht, “Complement evasion by human pathogens,” Nature Reviews Microbiology, vol. 6, no. 2, pp. 132–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Ratajczak, R. Reca, M. Kucia et al., “Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/ progenitor cells in bone marrow,” Blood, vol. 103, no. 6, pp. 2071–2078, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Z. Ratajczak, R. Reca, M. Wysoczynski, J. Yan, and J. Ratajczak, “Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)-Implications for trafficking of CXCR4+ stem cells,” Experimental Hematology, vol. 34, no. 8, pp. 986–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Wysoczynski, R. Reca, H. Lee, W. Wu, J. Ratajczak, and M. Z. Ratajczak, “Defective engraftment of C3aR-/- hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing,” Leukemia, vol. 23, no. 8, pp. 1455–1461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Korade and A. K. Kenworthy, “Lipid rafts, cholesterol, and the brain,” Neuropharmacology, vol. 55, no. 8, pp. 1265–1273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Gu, M. D. Filippi, J. A. Cancelas et al., “Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases,” Science, vol. 302, no. 5644, pp. 445–449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. M. D. Filippi, C. E. Harris, J. Meller, Y. Gu, Y. Zheng, and D. A. Williams, “Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils,” Nature Immunology, vol. 5, no. 7, pp. 744–751, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. J. A. Cancelas, A. W. Lee, R. Prabhakar, K. F. Stringer, Y. Zheng, and D. A. Williams, “Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization,” Nature Medicine, vol. 11, no. 8, pp. 886–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. F. C. Yang, S. J. Atkinson, Y. Gu et al., “Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5614–5618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Guan, “Integrins, Rafts, Rac, and Rho,” Science, vol. 303, no. 5659, pp. 773–774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Gómez-Moutón, R. A. Lacalle, E. Mira et al., “Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis,” Journal of Cell Biology, vol. 164, no. 5, pp. 759–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Ganz, “Defensins: antimicrobial peptides of innate immunity,” Nature Reviews Immunology, vol. 3, no. 9, pp. 710–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. C. D. Ciornei, T. Sigurdardóttir, A. Schmidtchen, and M. Bodelsson, “Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 7, pp. 2845–2850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Bucki, K. Leszczyńska, A. Namiot, and W. Sokołowski, “Cathelicidin LL-37: a multitask antimicrobial peptide,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 1, pp. 15–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. S. M. Zughaier, P. Svoboda, J. Pohl, D. S. Stephens, and W. M. Shafer, “The human host defense peptide LL-37 interacts with Neisseria meningitidis capsular polysaccharides and inhibits inflammatory mediators release,” PLoS One, vol. 5, no. 10, Article ID e13627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Malmsten and A. Schmidtchen, “Antimicrobial C3a-biology, biophysics, and evolution,” Advances in Experimental Medicine and Biology, vol. 598, pp. 141–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Sugita, K. Kabashima, J. I. Sakabe, R. Yoshiki, H. Tanizaki, and Y. Tokura, “FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice,” American Journal of Pathology, vol. 177, no. 4, pp. 1881–1887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. M. Durand and L. I. Zon, “Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment,” Current Opinion in Hematology, vol. 17, no. 4, pp. 308–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Avigdor, P. Goichberg, S. Shivtiel et al., “CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow,” Blood, vol. 103, no. 8, pp. 2981–2989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Shirvaikar, L. A. Marquez-Curtis, M. Z. Ratajczak, and A. Janowska-Wieczorek, “Hyaluronic acid and thrombin upregulate MT1-MMP through PI3K and Rac-1 signaling and prime the homing-related responses of cord blood hematopoietic stem/progenitor cells,” Stem Cells and Development, vol. 20, no. 1, pp. 19–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Ohkawa, K. Nakamura, S. Okubo et al., “Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters,” Annals of Clinical Biochemistry, vol. 45, no. 4, pp. 356–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Fyrst and J. D. Saba, “An update on sphingosine-1-phosphate and other sphingolipid mediators,” Nature Chemical Biology, vol. 6, no. 7, pp. 489–497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Sanchez and T. Hla, “Structural and functional characteristics of S1P receptors,” Journal of Cellular Biochemistry, vol. 92, no. 5, pp. 913–922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Rivera, R. L. Proia, and A. Olivera, “The alliance of sphingosine-1-phosphate and its receptors in immunity,” Nature Reviews Immunology, vol. 8, no. 10, pp. 753–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Obinata and T. Hla, “Sphingosine 1-phosphate in coagulation and inflammation,” Seminars in Immunopathology, vol. 34, no. 1, pp. 73–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. D. H. Walter, U. Rochwalsky, J. Reinhold et al., “Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 275–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Michaud, D. S. Im, and T. Hla, “Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation,” Journal of Immunology, vol. 184, no. 3, pp. 1475–1483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Matloubian, C. G. Lo, G. Cinamon et al., “Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1,” Nature, vol. 427, no. 6972, pp. 355–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. M. L. Allende, J. L. Dreier, S. Mandala, and R. L. Proia, “Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration,” Journal of Biological Chemistry, vol. 279, no. 15, pp. 15396–15401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. S. R. Schwab and J. G. Cyster, “Finding a way out: lymphocyte egress from lymphoid organs,” Nature Immunology, vol. 8, no. 12, pp. 1295–1301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. P. Pereira, J. G. Cyster, and Y. Xu, “A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow,” PLoS One, vol. 5, no. 2, Article ID e9277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. E. E. Donovan, R. Pelanda, and R. M. Torres, “S1P3 confers differential S1P-induced migration by autoreactive and non-autoreactive immature B cells and is required for normal B-cell development,” European Journal of Immunology, vol. 40, no. 3, pp. 688–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Golan, Y. Vagima, A. Ludin et al., “S1P promotes murine progenitor cell egress and mobilization via S1P1 mediated ROS signaling and SDF-1 release,” Blood, vol. 119, no. 11, pp. 2478–2488, 2012. View at Google Scholar
  90. A. Boath, C. Graf, E. Lidome, T. Ullrich, P. Nussbaumer, and F. Bornancin, “Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin,” Journal of Biological Chemistry, vol. 283, no. 13, pp. 8517–8526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Gómez-Muñoz, J. Y. Kong, B. Salh, and U. P. Steinbrecher, “Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages,” Journal of Lipid Research, vol. 45, no. 1, pp. 99–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. D. N. Brindley, D. English, C. Pilquil, K. Buri, and Z. C. Ling, “Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 33–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. V. A. Sciorra and A. J. Morris, “Roles for lipid phosphate phosphatases in regulation of cellular signaling,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 45–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. S. R. Schwab, J. P. Pereira, M. Matloubian, Y. Xu, Y. Huang, and J. G. Cyster, “Immunology: lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients,” Science, vol. 309, no. 5741, pp. 1735–1739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Long, P. Darroch, K. F. Wan et al., “Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools,” Biochemical Journal, vol. 391, no. 1, pp. 25–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Mechtcheriakova, A. Wlachos, J. Sobanov et al., “Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses,” Cellular Signalling, vol. 19, no. 4, pp. 748–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Zhao, S. K. Kalari, P. V. Usatyuk et al., “Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: Role of lipid phosphate phosphatase-1 and sphingosine kinase,” Journal of Biological Chemistry, vol. 282, no. 19, pp. 14165–14177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Pappu, S. R. Schwab, I. Cornelissen et al., “Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate,” Science, vol. 316, no. 5822, pp. 295–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. A. Hannun and L. M. Obeid, “Principles of bioactive lipid signalling: lessons from sphingolipids,” Nature Reviews Molecular Cell Biology, vol. 9, no. 2, pp. 139–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. U. Peest, S. C. Sensken, P. Andréani, P. Hänel, P. P. Van Veldhoven, and M. H. Gräler, “S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake,” Journal of Cellular Biochemistry, vol. 104, no. 3, pp. 756–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Burnstock, B. B. Fredholm, R. A. North, and A. Verkhratsky, “The birth and postnatal development of purinergic signalling,” Acta Physiologica, vol. 199, no. 2, pp. 93–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Burnstock, “Introductory overview of purinergic signaling,” Frontiers in Bioscience, vol. 3, pp. 896–900, 2011. View at Google Scholar
  103. V. Salvestrini, R. Zini, L. Rossi et al., “Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice,” Blood, vol. 119, no. 1, pp. 217–226, 2012. View at Google Scholar
  104. L. Xia, J. M. McDaniel, T. Yago, A. Doeden, and R. P. McEver, “Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow,” Blood, vol. 104, no. 10, pp. 3091–3096, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Rauvala, J. P. Prieels, and J. Finne, “Cell adhesion mediated by a purified fucosyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 13, pp. 3991–3995, 1982. View at Google Scholar · View at Scopus
  106. W. H. Peranteau, M. Endo, O. O. Adibe, A. Merchant, P. W. Zoltick, and A. W. Flake, “CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation,” Blood, vol. 108, no. 13, pp. 4268–4274, 2006. View at Publisher · View at Google Scholar · View at Scopus