Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 810859, 9 pages
http://dx.doi.org/10.1100/2012/810859
Research Article

Cardiac Output and Performance during a Marathon Race in Middle-Aged Recreational Runners

1UBIAE, U902 INSERM, University of Evry-Val-D’Essonne, 91025 Evry, France
2Sports Medicine Center, CCAS, Paris, France

Received 15 October 2011; Accepted 28 December 2011

Academic Editor: David Nieman

Copyright © 2012 Véronique L. Billat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Bramble and D. E. Lieberman, “Endurance running and the evolution of Homo,” Nature, vol. 432, no. 7015, pp. 345–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. E. Lieberman and D. M. Bramble, “The evolution of marathon running: capabilities in humans,” Sports Medicine, vol. 37, no. 4-5, pp. 288–290, 2007. View at Google Scholar · View at Scopus
  3. W. O. Roberts and B. J. Maron, “Evidence for decreasing occurrence of sudden cardiac death associated with the marathon,” Journal of the American College of Cardiology, vol. 46, no. 7, pp. 1373–1374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Thompson and C. V. Venero, “A history of medical reports on the Boston marathon: 112 years and still running,” Medicine and Science in Sports and Exercise, vol. 41, no. 6, pp. 1341–1348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. T. Pedoe, “Marathon medical support historical perspectives: ‘From cradle to averting the grave’,” Sports Medicine, vol. 37, no. 4-5, pp. 291–293, 2007. View at Google Scholar · View at Scopus
  6. P. E. Di Pramero, G. Atchou, J. C. Bruckner, and C. Moia, “The energetics of endurance running,” European Journal of Applied Physiology and Occupational Physiology, vol. 55, no. 3, pp. 259–266, 1986. View at Google Scholar · View at Scopus
  7. M. J. Joyner, “Modeling: optimal marathon performance on the basis of physiological factors,” Journal of Applied Physiology, vol. 70, no. 2, pp. 683–687, 1991. View at Google Scholar · View at Scopus
  8. M. B. Maron, S. M. Horvath, J. E. Wilkerson, and J. A. Gliner, “Oxygen uptake measurements during competitive marathon running,” Journal of Applied Physiology, vol. 40, no. 5, pp. 836–838, 1976. View at Google Scholar · View at Scopus
  9. V. L. Billat, A. Demarle, J. Slawinski, M. Paiva, and J. P. Koralsztein, “Physical and training characteristics of top-class marathon runners,” Medicine and Science in Sports and Exercise, vol. 33, no. 12, pp. 2089–2097, 2001. View at Google Scholar · View at Scopus
  10. D. L. Costill, G. Branam, D. Eddy, and K. Sparks, “Determinants of marathon running success,” Internationale Zeitschrift für Angewandte Physiologie, vol. 29, no. 3, pp. 249–254, 1971. View at Publisher · View at Google Scholar · View at Scopus
  11. E. F. Coyle, “Physiological regulation of marathon performance,” Sports Medicine, vol. 37, no. 4-5, pp. 306–311, 2007. View at Google Scholar · View at Scopus
  12. V. L. Billat, L. Mille-Hamard, Y. Meyer, and E. Wesfreid, “Detection of changes in the fractal scaling of heart rate and speed in a marathon race,” Physica A, vol. 388, no. 18, pp. 3798–3808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Billat, L. Hamard, J. P. Koralsztein, and R. H. Morton, “Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run,” Journal of Applied Physiology, vol. 107, no. 2, pp. 478–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Esteve-Lanao, A. Lucia, J. J. deKoning, and C. Foster, “How do humans control physiological strain during strenuous endurance exercise?” PLoS One, vol. 3, article e2943, 2003. View at Google Scholar
  15. G. P. Nassis and N. D. Geladas, “Cardiac output decline in prolonged dynamic exercise is affected by the exercise mode,” Pflugers Archiv European Journal of Physiology, vol. 445, no. 3, pp. 398–404, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Achten and A. E. Jeukendrup, “Heart rate monitoring: applications and limitations,” Sports Medicine, vol. 33, no. 7, pp. 517–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. V. L. Billat, “The occurrence of a VO2 drop after the achievement of a VO2 peak or VO2max plateau,” Journal of Applied Physiology, vol. 104, no. 1, pp. 283–285, 2008. View at Google Scholar
  18. M. J. Joyner, J. R. Ruiz, and A. Lucia, “The two-hour marathon: who and when?” Journal of Applied Physiology, vol. 110, no. 1, pp. 275–277, 2011. View at Publisher · View at Google Scholar
  19. A. Charloux, E. Lonsdorfer-Wolf, R. Richard et al., “A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: Comparison with the “direct” Fick method,” European Journal of Applied Physiology, vol. 82, no. 4, pp. 313–320, 2000. View at Publisher · View at Google Scholar
  20. L. V. Billat and J. P. Koralsztein, “Significance of the velocity at VO2max and time to exhaustion at this velocity,” Sports Medicine, vol. 22, no. 2, pp. 90–108, 1996. View at Google Scholar · View at Scopus
  21. J. E. McLaughlin, G. A. King, E. T. Howley, D. R. Bassett, and B. E. Ainsworth, “Validation of the COSMED K4 b2 portable metabolic system,” International Journal of Sports Medicine, vol. 22, no. 4, pp. 280–284, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. B. Pyne, T. Boston, D. T. Martin, and A. Logan, “Evaluation of the Lactate Pro blood lactate analyser,” European Journal of Applied Physiology, vol. 82, no. 1-2, pp. 112–116, 2000. View at Google Scholar · View at Scopus
  23. S. Aunola and H. Rusko, “Reproducibility of aerobic and anaerobic thresholds in 20-50 year old men,” European Journal of Applied Physiology and Occupational Physiology, vol. 53, no. 3, pp. 260–266, 1984. View at Google Scholar · View at Scopus
  24. V. Bougault, E. Lonsdorfer-Wolf, A. Charloux, R. Richard, B. Geny, and M. Oswald-Mammosser, “Does thoracic bioimpedance accurately determine cardiac output in COPD patients during maximal or intermittent exercise?” Chest, vol. 127, no. 4, pp. 1122–1131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. O. L. Charansonney and J. P. Després, “Disease prevention-should we target obesity or sedentary lifestyle?” Nature Reviews Cardiology, vol. 7, no. 8, pp. 468–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. G. Crandall and J. González-Alonso, “Cardiovascular function in the heat-stressed human,” Acta Physiologica, vol. 199, no. 4, pp. 407–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Fukuda, T. Maegawa, A. Matsumoto et al., “Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise,” International Heart Journal, vol. 51, no. 3, pp. 170–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Tordi, L. Mourot, B. Matusheski, and R. L. Hughson, “Measurements of cardiac output during constant exercises: comparison of two non-invasive techniques,” International Journal of Sports Medicine, vol. 25, no. 2, pp. 145–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Lepretre, C. Foster, J. P. Koralsztein, and V. L. Billat, “Heart rate deflection point as a strategy to defend stroke volume during incremental exercise,” Journal of Applied Physiology, vol. 98, no. 5, pp. 1660–1665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Richard, E. Lonsdorfer-Wolf, A. Charloux et al., “Noninvasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device,” European Journal of Applied Physiology, vol. 85, pp. 202–207, 2001. View at Google Scholar
  31. K. K. Teo, M. D. Hetherington, R. G. Haennel, P. V. Greenwood, R. E. Rossall, and T. Kappagoda, “Cardiac output measured by impedance cardiography during maximal exercise tests,” Cardiovascular Research, vol. 19, no. 12, Article ID 10.1093/cvr/19.12.737, pp. 737–743, 1985. View at Google Scholar
  32. J. V. G. A. Durnin and J. Womersley, “Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years,” British Journal of Nutrition, vol. 32, no. 1, pp. 79–97, 1974. View at Google Scholar · View at Scopus
  33. V. L. Billat, M. Dupré, J. R. Karp, and J. P. Koralsztein, “Mountaineering experience decreases the net oxygen cost of climbing Mont Blanc (4,808 m),” European Journal of Applied Physiology, vol. 108, no. 6, pp. 1209–1216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. González-Alonso, D. E. R. Warburton, and N. Gledhill, “Point:Counterpoint: stroke volume does/does not decline during exercise at maximal effort in healthy individuals,” Journal of Applied Physiology, vol. 104, no. 1, pp. 275–280, 2008. View at Publisher · View at Google Scholar
  35. R. G. Fritzsche, T. W. Switzer, B. J. Hodgkinson, and E. F. Coyle, “Stroke volume decline during prolonged exercise is influenced by the increase in heart rate,” Journal of Applied Physiology, vol. 86, no. 3, pp. 799–805, 1999. View at Google Scholar · View at Scopus
  36. B. I. Rapoport, “Metabolic factors limiting performance in marathon runners,” PLoS Computational Biology, vol. 6, no. 10, Article ID 1000960, 2010. View at Publisher · View at Google Scholar · View at Scopus