The Scientific World Journal
Volume 2012 (2012), Article ID 846824, 5 pages
http://dx.doi.org/10.1100/2012/846824
Review Article
Ferrous versus Ferric Oral Iron Formulations for the Treatment of Iron Deficiency: A Clinical Overview
Palacios Institute of Woman’s Health, Antonio Acuña 9, 28009 Madrid, Spain
Received 18 October 2011; Accepted 29 December 2011
Academic Editors: J. E. Pimanda and A. Saeid
Copyright © 2012 Palacios Santiago. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- J. Adamson, “Iron deficience and other hypoproliferative anemias,” in Harrison's Principles of Internal Medicine, D. L. Kasper, E. Braunwald, A. S. Fauci et al., Eds., chapter 90, part 5, section 2, McGraw Hill, New York, NY, USA, 16th edition, 2005. View at Google Scholar
- “Worldwide prevalence of anaemia 1993–2005,” WHO Global database on anaemia, http://whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf.
- “Iron deficiency anemia: assessment, prevention, and control,” UNICEF/UNU/WHO, Geneva, Switzerland, 2001.
- A. Krafft, R. Huch, and C. Beymann, “Impact of parturition on iron satus in non anaemic iron deficiency,” European Journal of Clinical Investigation, vol. 33, pp. 919–923, 2003. View at Google Scholar
- J. P. Peña-Rosas and F. E. Viteri, “Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD004736, 2009. View at Google Scholar · View at Scopus
- A. R. Nissenson, L. T. Goodnough, and R. W. Dubois, “Anemia: not just an innocent bystander?” Archives of Internal Medicine, vol. 163, no. 12, pp. 1400–1404, 2003. View at Publisher · View at Google Scholar · View at Scopus
- S. Hercberg, P. Preziosi, S. Briançon et al., “A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: the SU.Vi.Max study—design, methods, and participant characteristics,” Controlled Clinical Trials, vol. 19, no. 4, pp. 336–351, 1998. View at Publisher · View at Google Scholar · View at Scopus
- M. M. Heeney and N. C. Andrews, “Iron homeostasis and inherited iron overload disorders: an overview,” Hematology/Oncology Clinics of North America, vol. 18, no. 6, pp. 1379–1403, 2004. View at Publisher · View at Google Scholar · View at Scopus
- T. H. Bothwell, R. W. Charlton, J. D. Cook, and C. A. Finch, Iron Metabolism in Man, Blackwell, Oxford, UK, 1979.
- S. Miret, R. J. Simpson, and A. T. McKie, “Physiology and molecular biology of dietary iron absorption,” Annual Review of Nutrition, vol. 23, pp. 283–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
- E. H. J. M. Kemna, H. Tjalsma, H. L. Willems, and D. W. Swinkels, “Hepcidin: from discovery to differential diagnosis,” Haematologica, vol. 93, no. 1, pp. 90–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
- R. J. Stotzfus and M. L. Deryfuss, “Guidelines for the use of iron supplements to prevent and treat iron deficiency anaemia,” International Nutritional Anaemia Consultative Group ( INACG), World Health Organisation (WHO), United Nations Childrens Fund (UNICEF), Washington, DC, USA, 1998, http://www.who.int/nutrition/publications/micronutrients/guidelines_for_Iron_supplementation.pdf.
- The prevalence of anaemia in women: a tabulation of available information, World Health Organization, Geneva, Switzerland, 1992.
- “Recommendations for clinical practice—Optimal methods for educating pregnant women,” French National Health Authorities (Haute Autorité de Santé), 2005, http://www.has-sante.fr/portail/jcms/c_454394/comment-mieux-informer-les-femmes-enceintes.
- “Preventing Iron deficiency in women and children. Backgroud and consensus on key technical issues and ressources for advocacy planning and implemnting national programms,” UNICEF/UNU/WHO/MI. UNICEF, New York, NY, USA, October 1998.
- P. Nestel and D. Alnwick, “Iron-micronutrient supplements for young children,” Summary and conclusions of a consultation held at UNICEF, Copenhagen, Denmark, August 1996.
- L. Davidsson, P. Kastenmayer, H. Szajewska, R. F. Hurrell, and D. Barclay, “Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate,” American Journal of Clinical Nutrition, vol. 71, no. 6, pp. 1597–1602, 2000. View at Google Scholar · View at Scopus
- R. Hoffman, E. Benz, S. Shattil et al., Hematology: Basic Principles and Practice, chapter 16, Churchill Livingstone/Harcourt Brace & Co, New York, NY, USA, 3rd edition, 2000.
- E. M. De Maeyer, P. Dallman, J. M. Gurney et al., Preventing and controlling iron deficiency anaemia through primary healthcare. A guide for health administrators and programme managers, World Health Organization, Geneva, Switzerland, 1989.
- J. Nagpal and P. Choudhury, “Iron formulations in pediatric practice,” Indian Pediatrics, vol. 41, no. 8, pp. 807–815, 2004. View at Google Scholar
- J. P. Kaltwasser, C. Hansen, Y. Oebike, and E. Werner, “Assessment of iron availability using stable 54Fe,” European Journal of Clinical Investigation, vol. 21, no. 4, pp. 436–442, 1991. View at Google Scholar · View at Scopus
- P. Jacobs, L. A. Wormald, and M. C. Gregory, “Absorption of iron polymaltose and ferrous sulphate in rats and humans. A comparative study,” South African Medical Journal, vol. 55, no. 26, pp. 1065–1072, 1979. View at Google Scholar · View at Scopus
- P. Jacobs, D. Fransman, and P. Coghlan, “Comparative bioavailability of ferric polymaltose and ferrous sulphate in iron-deficient blood donors,” Journal of Clinical Apheresis, vol. 8, no. 2, pp. 89–95, 1993. View at Google Scholar · View at Scopus
- J. R. Bordelaa, R. E. Cicero, M. M. Dibildox, D. R. Sotres, and R. G. Gutierrez, “IPC versus Iron sulphate in the treatment of iron deficiency in infants,” Revues Médicales Pédiatriques, vol. 67, pp. 63–67, 2000. View at Google Scholar
- P. Jacobs, G. Johnson, and L. Wood, “Oral iron therapy in human subjects, comparative absorption between ferrous salts and iron polymaltose,” Journal of Medicine, vol. 15, no. 5-6, pp. 367–377, 1984. View at Google Scholar · View at Scopus
- S. Ozsoylu and N. Ozbek, “Bioavailability of iron,” Experimental Hematology, vol. 19, no. 10, p. 1065, 1991. View at Google Scholar
- B. C. Mehta, “Failure of oral iron therapy in treatment of iron deficiency anemia: pharmaceutical iatrogenic cause,” Indian Journal of Medical Sciences, vol. 55, no. 3, pp. 157–158, 2001. View at Google Scholar · View at Scopus
- B. C. Mehta, “Iron hydroxide polymaltose: iatrogenic cause of persistent iron deficiency anemia despite continous iron therapy,” Journal of the Association of Physicians of India, vol. 50, pp. 279–280, 2002. View at Google Scholar
- S. K. Bichile and V. Kumar, “Persistent iron deficiency anemia,” The Journal of the Association of Physicians of India, vol. 50, pp. 617–618, 2002. View at Google Scholar · View at Scopus
- G. J. Ruiz-Argüelles, A. Díaz-Hernández, C. Manzano, and G. J. Ruiz-Delgado, “Ineffectiveness of oral iron hydroxide polymaltose in iron-deficiency anemia,” Hematology, vol. 12, no. 3, pp. 255–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
- B. C. Mehta, “Ineffectiveness of ironpolymaltose treatment of iron deficiency anaemia,” Journal of the Association of Physicians of India, vol. 51, pp. 419–421, 2003. View at Google Scholar
- J. P. Kaltwasser, E. Werner, and M. Niechzial, “Bioavailability and therapeutic efficacy of bivalent and trivalent iron preparations,” Arzneimittel-Forschung, vol. 37, no. 1, pp. 122–129, 1987. View at Google Scholar · View at Scopus
- S. Malhotra, S. K. Garg, G. K. Khullar et al., “Kinetics of two different iron formulations and their effect on diurnal variation of serum iron levels,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 26, no. 6, pp. 417–420, 2004. View at Google Scholar · View at Scopus
- H. C. Heinrich, “Intestinal absorption of 59Fe from neutron-activated commercial oral iron(III)-citrate and iron(III)-hydroxide-polymaltose complexes in man,” Drug Research, vol. 37, no. 1, pp. 105–107, 1987. View at Google Scholar · View at Scopus
- P. Nielsen, E. E. Gabbe, R. Fischer, and H. C. Heinrich, “Bioavailability of iron from oral ferric polymaltose in humans,” Arzneimittel-Forschung/Drug Research, vol. 44, no. 6, pp. 743–748, 1994. View at Google Scholar · View at Scopus
- P. Nielsen, R. Kongi, and R. Fischer, “Efficacy of a prolonged-release iron preparation in iron deficiency anaemia,” in Proceedings of the 16th Wonca European Conference, 2010.
- R. J. Langstaff, P. Geisser, W. G. Heil, and J. M. Bowdler, “Treatment of iron-deficiency anaemia: a lower incidence of adverse effects with Ferrum Hausmann than ferrous sulphate,” British Journal of Clinical Research, vol. 4, pp. 191–198, 1993. View at Google Scholar · View at Scopus
- A. V. Bopche, R. Dwivedi, R. Mishra, and G. S. Patel, “Ferrous sulfate versus iron polymaltose complex for treatment of iron deficiency anemia in children,” Indian Pediatrics, vol. 46, no. 10, pp. 883–885, 2009. View at Google Scholar · View at Scopus
- F. A. Haliotis and D. A. Papanastasiou, “Comparative study of tolerability and efficacy of iron protein succinylate versus iron hydroxide polymaltose complex in the treatment of iron deficiency in children,” International Journal of Clinical Pharmacology and Therapeutics, vol. 36, no. 6, pp. 320–325, 1998. View at Google Scholar · View at Scopus
- G. C. Rajadhyaksha, S. Shahani, and D. Pawar, “Evaluation of efficacy and tolerability of iron polymaltose complex tablets in iron deficiency anaemia during pregnancy,” JAMA India, vol. 3, pp. 53–55, 2000. View at Google Scholar
- P. S. N. Reddy, B. B. Adsul, K. Gandewar, K. M. Korde, and A. Desai, “Evaluation of efficacy and safety of iron polymaltose complex and folic acid (Mumfer) vs iron formulation (Ferrous Fumarate) in female patients with anaemia,” Journal of the Indian Medical Association, vol. 99, no. 3, pp. 154–155, 2001. View at Google Scholar · View at Scopus
- B. C. Mehta, “Iron hydroxide polymaltose—cause of persistent iron deficiency anemia at delivery,” Indian journal of medical sciences, vol. 55, no. 11, pp. 616–620, 2001. View at Google Scholar · View at Scopus
- M. Mára, J. Živny, V. Eretová et al., “Changes in markers of anemia and iron metabolism and how they are influenced by antianemics in postpartum period,” Acta Obstetricia et Gynecologica Scandinavica, vol. 80, no. 2, pp. 142–148, 2001. View at Publisher · View at Google Scholar
- J. F. Sanders, “Clinical response to iron-polysaccharide complex in geriatric patients with iron-deficiency anemia,” Michigan medicine, vol. 67, no. 11, pp. 726–727, 1968. View at Google Scholar · View at Scopus
- F. G. Hayhoe, “Iron preparations for anaemia,” British Medical Journal, vol. 1, no. 5180, pp. 1195–1197, 1960. View at Google Scholar · View at Scopus
- P. B. B. Gatenby and E. W. Lillie, “Iron-deficiency anaemia in pregnancy,” The Lancet, vol. 265, no. 6867, pp. 740–743, 1955. View at Google Scholar · View at Scopus
- G. Rybo and L. Sölvell, “Side-effect studies on a new sustained release iron preparation,” Scandinavian Journal of Haematology, vol. 8, no. 4, pp. 257–264, 1971. View at Google Scholar
- P. C. Elwood and G. Williams, “A comparative trial of slow-release and conventional iron preparations,” Practitioner, vol. 204, no. 224, pp. 812–815, 1970. View at Google Scholar · View at Scopus
- C. Brock, H. Curry, and C. Hanna, “Adverse effects of iron supplementation: a comparative trial of a wax-matrix iron preparation and conventional ferrous sulfate tablets,” Clinical Therapeutics, vol. 7, no. 5, pp. 568–573, 1985. View at Google Scholar
- J. Manasanch, C. Castelo-Branco, M. J. Cancelo-Hidalgo et al., “Tolerability of different oral iron supplements: a systematic review,” in Proceedings of the 16th Wonca European Conference, 2010.